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There is a great deal of structural regularity in the natural envi-
ronment, and such regularities confer an opportunity to form
compressed, efficient representations. Although this concept has
been extensively studied within the domain of low-level sensory
coding, there has been limited focus on efficient coding in the field
of visual attention. Here we show that spatial patterns of orien-
tation information (‘‘spatial ensemble statistics’’) can be efficiently
encoded under conditions of reduced attention. In our task, ob-
servers monitored for changes to the spatial pattern of background
elements while they were attentively tracking moving objects in
the foreground. By using stimuli that enable us to dissociate
changes in local structure from changes in the ensemble structure,
we found that observers were more sensitive to changes to the
background that altered the ensemble structure than to changes
that did not alter the ensemble structure. We propose that reduc-
ing attention to the background increases the amount of noise in
local feature representations, but that spatial ensemble statistics
capitalize on structural regularities to overcome this noise by
pooling across local measurements, gaining precision in the rep-
resentation of the ensemble.

efficient coding � natural image statistics � summary statistics

The visual system encounters a continuous flow of information
that must be parsed and grouped into meaningful features,

surfaces, objects, and events to enable visual recognition and action
in the world. Although visual analysis is a computational challenge,
there is a tremendous amount of redundancy in natural images (1,
2) upon which the visual system can capitalize to form a more
efficient coding scheme (3, 4). For example, natural images have a
great deal of regularity in contrast and intensity distributions (5, 6),
chromatic structure (7–10), reflectance spectra (11, 12), and spatial
structure (2, 3, 13–15). Statistical regularities and correlations are
a form of redundancy, and where there is redundancy, there is an
opportunity to compress information (16, 17).

Since Shannon’s theory of information (17, 18), psychology
research has focused on the idea that the visual system calculates
efficient codes for representing information (19–21). At the com-
putational level, efficient coding uses the statistics of the image
ensemble to derive a compact code that maximally reduces the
redundancy in the patterns with minimal loss of information (22).
In the past decades, efficient coding theory has provided an
explanation for a wide range of properties of the visual and auditory
system (23–29). However, there has been limited focus on efficient
coding in the field of attention, where capacity limitations are
pronounced and the ability to use compressed codes is therefore
essential to compensate for the limited resources available for
high-level visual cognition. Compressed representations would
enable us to represent more about the environment when few
resources are available.

The current study takes a step toward integrating these issues of
attentional resource limitations, information redundancy, compres-
sion, and the efficient coding of visual information. Recently there
has been increased interest in the ability of human observers to
perceive statistical properties of a visual scene, which can be seen
as a form of efficient coding in high-level vision. For instance,

observers can quickly and efficiently perceive the number of objects
(30), the mean size of objects (31, 32), the centroid of a collection
of objects (33), or the average facial emotion or gender in a crowd
(34). Critically, these statistical properties represent a single, com-
pact statistical summary of all of the information in a scene.
However, many of the regularities in natural images involve the
layout of spatial frequency and orientation information across the
visual field (35, 36). Here we demonstrate that the visual system can
also represent such spatial layout statistics, even under conditions
of reduced attention. Thus, statistical summary features that re-
semble the statistical structure of natural images are efficient codes,
which are robust to noise and can be represented in the human
visual system under conditions of reduced attention.

The Costs of Reduced Attention and the Benefits of
Computing Ensemble Statistics
Visual attention enables us to manage the overwhelming flow of
input information by selecting a subset of the incoming infor-
mation for further, prioritized processing. However, such selec-
tive processing comes at a great cost: the less attention we pay
to objects, the less precisely their features are represented
(37–39). For example, directing attention away from an object
reduces the perceived clarity (40), contrast (41), and high-
frequency response for the object (42, 43).

One way the visual system can compensate for the costs associ-
ated with reduced attention to objects and regions in the visual field
is to pool local features to form a statistical summary. Such
summary statistics are a compressed code that is less rich than the
full distribution of local details yet provides an accurate represen-
tation of group features. The increased precision of ensemble
statistics is because independent sources of noise cancel out when
averaged together. For example, if the task were to judge the size
of 2 discs, and their mean size (e.g., ref. 31), judgments of the mean
size would tend to be more accurate than judgments of the
individual sizes, because noise in the individual estimates cancels
out when averaged together (assuming independent sources of
noise for each individual). The degree of benefit from averaging will
be proportional to the amount of noise or uncertainty in the
representation of the individual elements. Previous research has
demonstrated that judgments of mean size (31, 44) and mean
location (33) are more accurate than judgments of these features
for individual items. Judgments of mean size have also been
shown to be quite robust, remaining accurate with 50-ms presen-
tation durations (44) for dense arrays (32) and for a wide range
distributions (44).

The representation of the centroid location of a set of objects is
also quite robust, remaining accurate even when attention is
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withdrawn from the objects. For example, in an attentional tracking
task (39), observers tracked objects moving continuously in a field
of moving distractors. At a random moment during the trial, the
distractors were deleted from the display. Observers could accu-
rately report the position of a single missing target item but
performed near chance when judging the position of a single
missing distractor item. However, they could report the center of
mass of the items (the centroid) well above chance, for both targets
and distractors. Importantly, it is not the case that observers lacked
knowledge about the distractors. Monte Carlo simulations sug-
gested that the accuracy for judging the centroid position was
predictable from the accuracy for judging the location of individual
items. Thus, as one would predict based on the benefits of aver-
aging, an accurate statistical summary can be computed even from
very noisy local measurements.

This previous work explored the ability to extract a very compact
statistical summary feature, the centroid. Such compressed repre-
sentations play an important role in eye movement behavior. For
instance, when saccading to a dot cluster, saccade-target landing
positions appear to be based on a centroid representation (45, 46).
However, there are other forms of statistical regularity in natural
images, such as the layout of spatial frequency and orientation
information in the visual field. These spatial statistics have proven
useful for scene categorization (15, 36), and for guiding attention to
task-relevant regions of the visual field (47). The purpose of the
current study was to explore whether summary statistics that more
closely resemble the spatial statistics of natural images can be
represented under conditions of reduced attention. For instance, a
coding scheme that collapses across local details to represent
ecological spatial regularities (such as the differences between top
and bottom part of a scene image) would benefit from averaging.
As such, ensemble coding of spatial patterns would compensate for
the costs of withdrawing attention by providing a compact, accurate
representation of the pattern of information outside the current
focus of attention, providing a rich scene representation despite
limited attentional capacity.

The Span of Ensemble Statistics. Researchers have referred to a
variety of statistical summary features by different terms, such as
‘‘global features’’ (36, 48), ‘‘holistic features’’ (49), or ‘‘sets’’ (30–32,
44). We refer to each of these types of features under the umbrella
term ‘‘ensemble statistics.’’ ‘‘Ensemble’’ refers to any representa-
tion that takes multiple image details and collapses across them or
associates them across space, whether those details are contained
within a specific spatial frequency band, and whether those details
are attached to segmented objects, parts, or locations in space.
Thus, an ensemble can include singular summary features, such as
the number of objects (30), the mean size of objects (31, 32), the
centroid of a collection of objects (33), and higher-level summary

features, such as the average facial emotion or gender in a crowd
(34); or spatial summary features, such as a particular combination
of local orientation and spatial frequency information (14, 36). In
each case the ensemble feature is a higher-level description that
collapses across or otherwise combines local features.

The Current Study. The primary question addressed in this study is
whether spatial ensemble statistics are efficient codes that can be
represented under conditions of reduced attention. To address this
question, the experiments required a stimulus for which we could
dissociate higher-order image structure from local image structure.
This is difficult to achieve in natural images, but it is possible with
spatial patterns of oriented objects such as Gabor patches, whose
statistical properties are manipulated to match certain regularities
found in natural images. Most of the spatial and spectral variance
encountered by humans in natural and carpentered environments
is represented by a pattern consisting of different orientations in the
top and bottom part of the scene (15, 50, 51). Thus, we arranged
Gabor patches to form 2 possible patterns defined by the average
orientation in the top and bottom regions of the display: top
vertical/bottom horizontal, or top horizontal/bottom vertical
(Fig. 1).

Most importantly, these images enable us to dissociate changes
in local image structure from changes to the ensemble structure.
Fig. 1 B and C shows 2 visual patterns that are equally different from
the original (Fig. 1A) in their local structure, as each individual
Gabor patch has rotated by 45° relative to the original image.
Critically, after these changes, 1 pattern conserves the same en-
semble structure as the original (ensemble same, Fig. 1B, vertical at
the top and horizontal at the bottom), whereas the other pattern
results in an ensemble with a different structure (ensemble differ-
ent, Fig. 1C, horizontal at the top and vertical at the bottom).

To probe the representation of these spatial ensembles with
reduced attention, we combined a variant of the change detection
task (52, 53) with an attentional tracking task (54), creating
conditions similar to natural viewing where observers focused on
particular objects in the scene, withdrawing some attentional re-
sources from background information. Tracking tasks have been
shown to be very attentionally demanding, keeping the focus of
attention on the targets and away from other information in the
display (33, 55–57).

In our experiments, observers were presented with 2 displays of
Gabors (as in Fig. 1), one at a time, and asked to detect if any local
Gabor patch changed orientation between the 2 displays. This task
was trivially easy when it was the only task because observers would
simply focus on 1 Gabor patch to report a change. But it became
challenging when observers had to keep track of several white
circles that moved haphazardly on top of the Gabor patterns. Fig.
2 illustrates how the 2 tasks were combined (see Fig. 2 legend and

A Original Image B Ensemble Same C Ensemble Different

Fig. 1. Ensemble structure defined by the spatial pattern of orientation information in the top and bottom regions of the image. (A) The original image has
a top vertical/bottom horizontal structure. (B) This image was generated by rotating each Gabor patch in the original image exactly 45° such that the ensemble
structure remains top vertical/bottom horizontal. (C) This image was generated by rotating each Gabor patch in the original image exactly 45° such that the
ensemble structure changes to top horizontal/bottom vertical.
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Methods for details). Critically, the background display appeared in
a perfectly aligned ensemble structure at a random time during the
tracking task, and only for a single video frame (�17 ms). This
manipulation was intended to discourage observers from paying
attention to the background change detection task—because at any
given moment the background was unlikely to contain useful
information—and to encourage observers to focus mainly on the
foreground tracking task.

By combining the attentional tracking and change detection
tasks, we were able to probe the visual system’s sensitivity to 2 types
of change that were perfectly matched for local differences but
varied in the degree to which they altered the ensemble structure
of the image. To anticipate the results under conditions of reduced
attention that increase noise in local feature representations, back-
ground changes are more noticeable when the ensemble structure
of the image is altered (experiments 1 and 2). Experiment 3 rules
out an alternative, local explanation for these results. Combined,
these findings indicate that spatial ensemble statistics can be
robustly represented with reduced attention. Such ensemble codes
are compact, compressed representations that lack local precision
but benefit from averaging across local features and therefore
accurately represent the pattern of information in a scene.

Results
Experiment 1: Ensemble Feature Changes Are Detected with Reduced
Attention. We used the combined change-detection and attentional
tracking task (see Fig. 2 and Methods) to determine whether the

ensemble structure of a background display was represented when
attention was focused on a tracking task. The ensemble structure of
the Gabor patches was set so that all items in the top half of the
display were vertical �22.5° and all items in the bottom half of the
display were horizontal �22.5° (top vertical/bottom horizontal
displays), or vice versa (top horizontal/bottom vertical displays).

Overall, participants accurately performed the primary tracking
task, typically missing 1 or 2 line touches (85% accuracy). The
remaining analyses focus on the change-detection task when no
more than 2 touches were missed, with raw accuracy scores
reported in Table S1. We also computed sensitivity for detecting a
change (d� � Z[HIT] � Z[FA]), where HIT is the hit rate (correctly
reporting a change) and FA is the false alarm rate (incorrectly
reporting a change). During the practice trials, change detection
accuracy was high for both the ensemble-different condition (mean
M � 2.43, SEM � �0.32) and the ensemble-same condition (M �
2.24, SEM � �0.55) and did not differ between the 2 conditions
(t � 1).

In contrast, there was a large, robust difference in d� between the
2 change types in the dual task condition (see Fig. 3A), with a
significant advantage for detecting changes in the ensemble-
different condition relative to the ensemble-same condition [t(7) �
3.2, P � 0.015, r2 � 0.60]. The local orientation change at each
location in the display was 45° in both the ensemble-different and
the ensemble-same condition, and yet there was a large reliable
difference in detection of these 2 change types. Thus, when atten-
tion is withdrawn from the background elements of the display,
changes that alter the ensemble structure of orientation informa-
tion are more noticeable than changes of equal magnitude that do
not alter the ensemble structure. This suggests that the background
is represented at a higher-order, abstract level that collapses across
local details and describes the pattern of orientation information
over large regions of the display. This global pattern is not con-
tained within the low spatial frequencies of the display: it is only
within the ensemble of relatively high-frequency orientation infor-
mation that the ensemble pattern emerges. In experiment 2, we test
whether the same result will be obtained for a different spatial
ensemble structure: left/right.
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Fig. 2. Stimuli for experiment 1. For the first 6–10 s, the background
consisted of Gabors that rotated and changed direction randomly. During this
period the background appeared to be random and unstructured. Then the
Gabors smoothly rotated into a coherent ensemble structure (e.g., vertical
top, horizontal bottom, as shown), remained aligned for 16.67 ms, then
disappeared for 100 ms. When the Gabors reappeared, each Gabor had exactly
the same orientation (Center), or each Gabor changed orientation by 45° such
that the ensemble structure remained the same (Left remains vertical top,
horizontal bottom), or such that the ensemble structure changed (Right has
changed to horizontal top and vertical bottom). In the dual task condition, the
foreground also consisted of 4 white circles that moved around the display
until the blank interval. In the dual task, observers focused their attention on
counting the number of times the white circles touched or crossed the red
lines, and then as a secondary task observers had to judge whether there was
a change to the background when it reappeared.

Ensemble
Different

Change Type

d‘

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d‘

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A Top/Bottom Ensemble Structure B Left/Right Ensemble Structure

Ensemble
Same

Ensemble
Different

Change Type

Ensemble
Same

Fig. 3. Performance on the background change detection task in Experi-
ments 1 and 2. (A) Results of experiment 1. Sensitivity to change (d�) was
greater when the ensemble structure was altered (ensemble-different) than
when the ensemble structure remained the same (ensemble-same), even
though the magnitude of local change was 45° for each Gabor in both
conditions. (B) Results of experiment 2. Sensitivity to change (d�) was again
greater when the ensemble structure was altered (ensemble-different) than
when the ensemble structure remained the same (ensemble-same). In both A
and B, error bars represent within-subject standard error of the mean calcu-
lated with Cousineau’s (73) modification of Loftus and Masson’s method (74).
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Experiment 2: Representation of Left/Right Structure with Reduced
Attention. Here we arranged local orientation information to form
2 possible patterns that were again defined by the average orien-
tation in 2 regions of the display: left vertical/right horizontal, or left
horizontal/right vertical. This left/right structure is an accidental
structure, and it accounts for less variance in natural images than
the top/bottom ensemble structure used in experiment 1 (15, 51).
If the visual system efficiently encodes any ensemble structure, then
we would expect the results to be identical to experiment 1.
However, if the system is tuned to patterns that are very diagnostic
of natural image variations, as an efficient coding theory would
suggest, then observers should be less sensitive to changes in the
left/right structure than they were to changes in the top/bottom
structure, and the advantage for detecting changes that alter the
ensemble structure should be reduced or eliminated.

All aspects of the stimuli and procedure were identical to those
in experiment 1, except that the variation of the ensemble structure
was between left/right. Participants’ accuracy at the primary track-
ing task was high (94%). Remaining analyses focus on d� in the
change-detection task. During the practice trials, change detection
accuracy was high for both the ensemble-different condition (M �
3.15, SEM � �0.52) and the ensemble-same condition (M � 3.02,
SEM � �0.48) and did not differ between the 2 conditions (t � 1).

In contrast, there was a robust difference between the 2 change
types in the dual task condition (see Fig. 3B), with a significant
advantage for detecting changes in the ensemble-different condi-
tion relative to the ensemble-same condition [t(7) � 2.87, P � 0.024,
r2 � 0.54]. Thus, again we find that when attention is withdrawn
from the background, observers are more sensitive to changes that
alter the ensemble structure of the background than changes that
do not alter the ensemble structure. Although the advantage in d�
for the ensemble-different condition in the current experiment
(M � 0.30, SEM � �0.10) was less pronounced than in experiment
1 (M � 0.75, SEM � �0.23), the interaction between change type
and experiment was marginal [F(1, 14) � 3.09, P � 0.10]. Thus,
further work will be necessary to determine whether changes in the
top/bottom pattern of orientation information are more noticeable
than differences in the left/right pattern of orientation information.
This would be expected if the background is represented at an
abstract level of representation along ensemble feature dimensions
that reflect the statistics of the natural world. Consistent with this
interpretation, top/bottom structure has been shown to be more
prevalent in natural images than left/right structure. However, it is
also possible that the asymmetry is related to other factors, such as
differences in the strength of grouping across the left and right
visual field (58), or differences between the top and bottom visual
field in figure ground segmentation (59) and attentional acuity (60).
Most importantly, experiment 2 replicates the finding that changes
in ensemble structure are more noticeable than locally matched
changes that do not alter the ensemble structure of the background.
In experiment 3, we rule out an alternative explanation for the
results of experiments 1 and 2 that appeals to a purely local
difference between conditions.

Experiment 3: No Effect of the Categorical Nature of Local Feature
Changes. We have assumed that the only difference between the
ensemble-different and ensemble-same conditions is whether the
ensemble structure of the display has changed. However, there is a
possible local factor that must be addressed. Previous work has
shown that orientation information might be coded categorically,
say as steep, shallow, left-tilted, or right-tilted (61), suggesting that
categorical changes in orientation might be more noticeable. For
example, it might be easier to detect an orientation change when an
item changes clockwise by 45° from near vertical (�22.5°) to near
horizontal (�67.5°) than when the same size change in the coun-
terclockwise direction takes an item from near vertical (�22.5°) to
still near vertical (�22.5°). If this is the case, then this entirely local
explanation could account for the results of experiments 1 and 2.

The ensemble-different condition had categorical orientation
changes (items changed from near vertical to near horizontal, or
vice versa), whereas the ensemble-same condition did not (after
changing near vertical items remained near vertical, and near
horizontal items remained near horizontal).

To determine whether categorical orientation changes are more
easily detected with reduced attention, observers performed the
same dual task as in the previous experiments, but there was no
coherent ensemble structure in the background. Instead, we gen-
erated random displays of Gabors, with each individual Gabor
appearing either near vertical or near horizontal. There were 2
types of changes: category-different, in which each item changed
orientation by 45° such that categorical orientation changes oc-
curred; and category-same, in which each item changed orientation
by 45° such that categorical orientation did not change. If categor-
ical orientation changes are more easily detected with reduced
attention, then we should see better performance in the category-
different condition. If there were no such advantage, then it would
confirm that the results of experiments 1 and 2 were not due to local
differences. All other aspects of the stimuli and procedure were
identical to experiment 1.

Overall participants accurately performed the primary tracking
task with 91% accuracy. During the practice trials, change detection
sensitivity (d�) was high for both the category-different condition
(M � 3.08, SEM � �0.32) and the category-same condition (M �
2.79, SEM � �0.14) and did not differ between the 2 conditions
[t(7) � 1.02, P � 0.342, r2 � 0.129].

Unlike experiments 1 and 2, change detection sensitivity (d�) was
not significantly different (t � 1) for the category-different condi-
tion (M � 0.54, SEM � �0.16) and the category-same condition
(M � 0.51, SEM � �0.17). These results suggest that with reduced
attention, there is no advantage for detecting changes that alter the
categorical orientation of the Gabor patches: A change from
vertical to near horizontal is no more noticeable than a change from
near vertical to near vertical. Thus, the results of experiments 1 and
2 cannot be attributed to local differences between conditions.

Discussion
It is widely acknowledged that reducing the amount of attention
paid to objects or regions decreases the precision with which their
features can be represented (37–39). We have previously shown that
the visual system can compensate for this decreased precision by
pooling local features to represent the entire ensemble with fairly
high accuracy (33), providing a relatively accurate representation of
ensemble statistics even with reduced attention. This previous work
explored a relatively concise ensemble feature: the center of mass
of a collection of objects (the centroid). Here we tested whether
ensembles that characterize the spatial distribution of spatial fre-
quency and orientation information could be represented with
reduced attention by using Gabor patterns with statistics that were
constrained to resemble a distribution of orientation information
that is commonly found in natural images. High noise in the
representation of local image details could potentially be overcome
by collapsing across those local measurements to represent the
pattern of information at a more abstract level (e.g., the average
orientation is ‘‘vertical’’ on top, and ‘‘horizontal’’ on the bottom of
this scene). Such an ensemble code would be more compact and
would benefit in accuracy from pooling across multiple local
measurements. The current results indicate that such spatial pat-
terns of orientation information can be represented with reduced
attention, supporting the idea that spatial ensemble statistics can
serve as a compact representation that enables the visual system to
overcome its severe capacity limitations.

Relation to Perceptual Grouping With/Without Attention. The ability
to compute and represent spatial ensemble statistics under condi-
tions of reduced attention is conceptually related to whether
perceptual grouping can occur with or without attention. Early
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research using the inattentional blindness paradigm suggested that
perceptual grouping and texture segregation of background stimuli
does not occur without attention (62). However, this paradigm
requires observers to recall their past experiences, and therefore it
is unclear whether observers actually did not perceive the back-
ground, or simply could not recall what it looked like (63). To
overcome this problem, subsequent research used an online mea-
sure of whether the background elements formed a perceptual
group (64). The results showed that online task performance was
biased by a perceptual illusion induced by the grouping of back-
ground elements, even though subsequently observers could not
accurately recall the appearance of the background.

Although texture segregation and perceptual grouping are
closely related to ensemble processing, our claim is not that
ensemble statistics can be processed without attention or awareness
(although they may be). There is strong evidence that there is no
conscious perception of information without attention (65–68),
whereas our hypothesis is about conscious, attentive vision. Spe-
cifically, our claim has 2 components: (i) reducing the amount of
attention paid to an object or region reduces the quality and
precision with which local visual features are represented, and (ii)
ensemble coding can compensate for this loss of local precision by
collapsing across local details to form an accurate representation of
the ensemble. On this view, if attention was completely withdrawn,
leaving no representation of local details, then it would be impos-
sible to represent and consciously perceive the ensemble. Thus, our
claims about ensemble statistics are about explicit, conscious per-
ception under conditions of reduced attention—not in the absence
of attention.

Role of Attention in the Perception of Ensemble Statistics. Previous
research has explored the possibility that ensemble statistical pro-
cessing is more efficient under conditions of distributed attention
(when attention is spread across the entire display), than under
conditions of focal attention (when attention is focused narrowly)
(69). On a first pass, the attention task used in the current paradigm
might seem to require distributed attention, given that observers are
attending to multiple objects that are spatially distributed across the
display. Counter to this intuition, previous work suggests that
attention is actually focally allocated to targets in such attentive
tracking tasks, and does not spread over the space between targets
(55, 56). Attention appears to select and track targets as if there
were multiple, independent foci of attention (70). On this view, the
current results would suggest that, even when our attention is focally
allocated to a subset of items, spatial ensemble statistics could be
computed outside the focus of attention. However, without inde-
pendent evidence to support the assumption that targets are
tracked by means of focal attention, it remains possible that the
background received diffuse attention in these displays, and that
such diffuse attention is necessary for computing spatial ensemble
statistics. Future experiments can address this question by requiring
observers to track a single target versus multiple targets (matching
these conditions for difficulty by adjusting speed) (37). If spatial
ensemble statistics are computed more accurately with diffuse
attention, then the ability to detect changes to the ensemble should
be greater when tracking multiple targets with diffuse attention
than when tracking a single target with focal attention.

Conclusion
Understanding of low-level sensory coding has been greatly ad-
vanced by exploring the relationship between the statistical regu-
larities present in the natural environment (particularly spatial
regularities) and perceptual coding mechanisms. Although rela-
tively little research on high-level vision has explored efficient
coding per se, research on high-level vision has explored the ability
to perceive compact ensemble statistics of a visual scene (e.g., the
average size of objects). Although such statistical processing can be
thought of as a form of efficient coding, a direct link to efficient

coding in low-level vision has been missing, partly because the
statistical properties investigated have been so different. Here we
provided evidence that the visual system represents spatial ensem-
ble statistics—patterns of spatial frequency and orientation infor-
mation—and that these representations are robust to the with-
drawal of attention. Expanding the notion of ensemble statistics to
such spatial patterns provides an important bridge between studies
of efficient coding in high-level vision (ensemble coding, set per-
ception, statistical perception, holistic processing), and efficient
coding in low-level sensory coding. This opens the door to exploring
how regularities in natural images affect not only low-level sensory
coding but also high-level vision. An important avenue for future
research is to explore the relationship between natural image
statistics and the efficiency of spatial ensemble coding. One in-
triguing possibility is that the efficiency with which a particular
spatial ensemble is represented is proportional to the likelihood of
that spatial ensemble occurring in natural images.

Methods
Participants. Separate groups of 8 observers participated in experiments 1 and 2.
A partially overlapping group of 8 observers participated in experiment 3 (6 new,
1 who participated in experiment 1, 1 who had participated in experiment 2). All
participantswere18to35yearsold,gave informedconsent,andwerepaid$10/h.

Apparatus. Experiments were run using the Psychophysics Toolbox extensions
(71, 72) on a 35° by 28° cathode ray tube display, viewed from �57 cm.

Stimuli. Fig. 2 shows the stimuli for a sample trial. Four white circles (radius �
0.35°) moved at a constant rate of 4°/s, within a central region of the screen
marked by a black, square outline (24.5° � 24.5°, line thickness � 0.1°). Two
diagonal red lines connected the corners of the square (line thickness � 0.1°), and
the background was gray. The motion direction of the circles was constrained
suchthat itemsappearedtoavoidoneanotherwhilemovingrandomlyaboutthe
display.

The stimuli for the background change detection task consisted of an 8 � 8
gridof100%contrastGaborpatches (2cyclesperdegree), eachsubtending�2.5°
by 2.5°. Displays were linearized with gamma correction (gamma � 2.25 for all
color guns) to prevent higher-order luminance artifacts. To mask the ensemble
structure of the background items, the Gabors were initially randomly oriented.
TheneachGaborpatchbegantospinat60°/s intheclockwiseorcounterclockwise
direction, changing direction with a 1/30 chance on each video frame (�2 times
per second). The initial rotation direction and direction changes were chosen
randomly and independently for each Gabor. During this phase of the trial, the
background appeared to be noisy and unstructured. Then, at a randomly deter-
mined time between 6 and 10 s, the Gabors smoothly aligned into a coherent
ensemble structure. In experiment 1, the patches would align so that the top of
the screen consisted of nearly vertical items (�22.5° from vertical), and the
bottom consisted of nearly horizontal items (�22.5° from horizontal), or the
opposite pattern. In experiment 2, the patches would align so that the left of the
screen consisted of nearly vertical items (�22.5° from vertical), and the right
consisted of nearly horizontal items (�22.5° from horizontal), or the opposite
pattern. In experiment 3, the patches would align so that the half of the items
appeared nearly vertical (�22.5° from vertical), and the other half appeared
nearly horizontal (�22.5° from horizontal), but the items were randomly posi-
tioned so that there was no ensemble structure.

The displays were perfectly aligned in this coherent ensemble structure for
only 1 video frame (16.67 ms), then disappeared for 100 ms , and reappeared in
1 of 3 conditions: exact-match (Fig. 2 Bottom Center), ensemble-same (Fig. 2
Bottom Left), or ensemble-different (Fig. 2 Bottom Right), as described above.
Critically, in both the ensemble-same and ensemble-different conditions, the
Gabors changed orientation by exactly the same amount (45°), so these condi-
tions were perfectly matched in terms of the magnitude of local feature change.

Procedure. Single-task practice phase. Over the course of 6–10 s, the Gabor
patches rotated and occasionally changed direction, such that the background
appeared to be random and unstructured. Then the Gabors rotated into a
coherent ensemble structure (e.g., vertical top, horizontal bottom, as shown in
Fig. 2), remained aligned for 16.67 ms, disappeared for 100 ms, and then reap-
peared.Observerswere instructedtodeterminewhetheranyof theGabors in the
display changed orientation when they reappeared. No explicit instruction was
given regarding the ensemble structure in the display. Observers were informed
that when 1 Gabor changed, all of them changed, and so if they noticed anything
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change, they should respond ‘‘change,’’ and otherwise they should respond ‘‘no
change.’’
Dual-task phase. Four white circles appeared in the foreground of the display until
the blank interval. At the beginning of each trial, the circles flashed off and on
twice a second for 2 s to remind observers to focus their attention on them. Then
each item moved about the display and the primary task was to attentively track
the targets and to keep count of the number of times a target item touched or
crossedoneoftheredlinesthatconnectedthecornersofthedisplay(onerunning
countcollapsedacrossall targets,notaseparatecount foreach individual target).
At the end of the trial, observers indicated whether they noticed any background
items change, and then typed in the number of times the tracking targets

touched or crossed the red lines. Although they entered their counting response
second, they were instructed to focus primarily on the tracking task.

Participants performed 90 practice trials and 90 dual-task trials. The 3 condi-
tions (exact-match, ensemble-same, ensemble-different) were equally likely and
randomly intermixed within a block.
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