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Fig. 1. Left: The top twelve overall most memorable visualizations from our experiment (most to least memorable from top left to
bottom right). Middle: The top twelve most memorable visualizations from our experiment when visualizations containing human
recognizable cartoons or images are removed (most to least memorable from top left to bottom right). Right: The twelve least
memorable visualizations from our experiment (most to least memorable from top left to bottom right).

Abstract—An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding.
In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact
and effectiveness, here we ask: “What makes a visualization memorable?” We ran the largest scale visualization study to date using
2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites,
government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including
ratings for data-ink ratios and visual densities. Using Amazon’s Mechanical Turk, we collected memorability scores for hundreds of
these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We
find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less
intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that
quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective
visualizations.

Index Terms—Visualization taxonomy, information visualization, memorability

1 INTRODUCTION

The Visualization community has recently witnessed a divide over the
value and impact of excessive chart annotation and decoration (i.e.,
“chart junk”). The conventional view, promoted by visualization ex-
perts such as Edward Tufte and Stephen Few, holds that visualizations
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should not include chart junk and should show the data as clearly as
possible without any distractors [13, 14, 37, 38]. This view has also
been supported by psychology lab studies, which show that simple and
clear visualizations are easier to understand [11, 24]. At the other end
of the spectrum, researchers have published that chart junk can pos-
sibly improve retention and force a viewer to expend more cognitive
effort to understand the graph, thus increasing their knowledge and
understanding of the data [4, 8, 19]. However, the findings of these
studies have been widely debated [13, 14].

What researchers agree on is that chart junk is not the only factor
that influences how a person sees, interprets, and remembers a visual-
ization. Other aspects of the visualization, such as graph type, color,
or aesthetics, also influence a visualization’s cognitive workload and
retention [8, 19, 39]. To disentangle these confounding factors we set
out to answer the basic question: “What makes a visualization mem-
orable?” Clearly, a more memorable visualization is not necessarily a
more comprehensible one. However, knowing what makes a visual-
ization memorable is a step towards answering higher level questions
like “What makes a visualization engaging?” or “What makes a vi-
sualization effective?”. Recent work has shown that memorability of
images of natural scenes is consistent across people, suggesting that
some images are intrinsically more memorable than others, indepen-
dent of an individual’s contexts and biases [20]. We are interested in
understanding if these findings hold for visualizations, and what key
factors make some visualizations intrinsically more memorable than
others.

Here, we designed and executed a study to measure the memora-



bility of visualizations. Specifically, we studied the memorability of
visualizations as images to better understand their intrinsic memora-
bility. While we did not specifically study the memorability or com-
prehensibility of the underlying data presented in the visualization in
the current work, identifying which type of visual information is mem-
orable or forgettable provides a basis for understanding a number of
cognitive aspects of visualizations. This is because given limited cog-
nitive resources and time to process novel information, capitalizing
on memorable displays is an effective strategy. Research in cogni-
tive psychology has shown that conceptual knowledge is an organizing
principle for the storage and retrieval of information in memory. For
instance, details of a story or a picture that are consistent within an
existing schema are more likely to be remembered than those that are
not [1, 22]. Recent large-scale visual memory work has shown that ex-
isting categorical knowledge supports memorability for item-specific
details [9, 22, 23]. In other words, many additional visual details of the
image come for free when retrieving memorable items. Understanding
the memorability of visualizations provides a baseline for leveraging
these cognitive capabilities.

For our research, we first built a new broad taxonomy of static vi-
sualizations that covers the large variety of visualizations used across
social and scientific domains. These visualization types range from
area charts, bar charts, line graphs, and maps to diagrams, point plots,
and tables. Next, we scraped over 5,693 real world visualizations from
a variety of websites covering different areas of visualization publica-
tions (e.g., news media, scientific journals, infographic blogs, etc.).
We present a breakdown of visualization types by publication sources,
showing some interesting visualization strategies and biases. Based on
the distribution of visualization types “in the wild” we took a represen-
tative sample of 2,070 single-panel visualizations from our database
and annotated them with certain visual attributes that we consider to
be informative for memorability, such as the data-ink ratio and the
visual density. We then used these 2,070 visualizations in an online
memorability study we launched via Amazon’s Mechanical Turk with
261 participants. This study allowed us to gather memorability scores
for hundreds of these visualizations, and determine which visualiza-
tion types and attributes were more memorable. While previous ex-
periments have demonstrated that some visualizations are easier to re-
member than others, this is the first study that systematically analyzes
this intuition. We believe this opens a new domain of investigation at
the interface between human cognition and visualization design.

2 RELATED WORK

Perception Theory and the Chart Junk Debate: Re-
searchers have explored the perception of individual graph types
based on tasks and data encodings [11, 24, 30]. More recently,
there have been a number of studies aiming to evaluate the im-
pact of embellishments on visualization memorability and comprehen-
sion [4, 7, 8, 14, 19, 27, 39]. Bateman et al. conducted a study to
test the comprehension and recall of graphs using an embellished ver-
sion and a plain version of each graph [4]. They showed that the em-
bellished graphs outperformed the plain graphs with respect to recall,
and the embellished versions were no less effective for comprehension
than the plain versions. There has been some support for the com-
prehension results from a neurobiological standpoint, as it has been
hypothesized that adding “visual difficulties” may enhance compre-
hension by a viewer [8, 19]. Other studies have shown that the effects
of stylistic choices and visual metaphors may not have such a signifi-
cant effect on perception and comprehension [7, 39]. While there have
been studies evaluating memorability and perception of graphical lay-
outs for specific types of graphs, such as the work by Marriott et al. for
network diagrams [27], there has not yet been a memorability study to
target a wide variety of visualizations.

In response to the Bateman study, Stephen Few wrote a comprehen-
sive critique of their methodology [14], most of which also applies to
other studies. A number of these studies were conducted with a limited
number of participants and target visualizations. Moreover, in some
studies the visualization targets were designed by the experimenters,
introducing inherent biases and over-simplifications [4, 8, 39]. We

reduced our biases by compiling a large database of thousands of real-
world visualizations and enrolling a large and more diverse set of par-
ticipants on Amazon’s Mechanical Turk. And while previous studies
confound perception, recall, comprehension, and measurements of in-
sight, we focus purely on memorability of the visualizations as images
to remove any obfuscation by other variables.

Visualization Taxonomies: Within the academic visualiza-
tion community there have been many approaches to creating visual-
ization taxonomies. Traditionally many visualization taxonomies have
been based on graphical perception models, the visual and organiza-
tional layout, as well as the graphical data encodings [6, 12, 35, 33].
Our proposed taxonomy most closely aligns with this approach. How-
ever, in existing taxonomies, statistical charts are often considered as
a group, even though they cover a broad range of visualization types.
We propose a taxonomy with distinct categories for statistical charts
based upon the visual encodings of data and the elementary perceptual
tasks enabled by them. Our taxonomy also includes newer visualiza-
tion types, such as text and matrix visualizations, which do not appear
in previously published taxonomies.

Another approach to visualization taxonomies is based on the un-
derlying algorithms of the visualization and not the data itself [32, 36].
There is also recent work on taxonomies for interactive visualizations
and the additional tasks they enable [16, 17, 33, 35]. Both of these
approaches are not applicable in our case since we focus on a large
number of static visualizations for which we do not have algorithm or
task classifications.

Outside of the academic community there is a thriving interest in
visualization collections for the general public. For example, the Peri-
odic Table for Management [26] present a classification of visualiza-
tions with a multitude of illustrated diagrams for business. The online
community Visualizing.org introduces an eight-category taxonomy to
organize the projects hosted on their site [25]. InfoDesignPatterns.com
classifies visualization design patterns based upon visual representa-
tion and user interaction [5]. Our taxonomy is more comprehensive
and identifies a dozen main graph types with many subtypes that span
the variety of visualizations we found online. We were inspired by the
reference guide by Harris [15], who provides a comprehensive refer-
ence for graphic representations, but no taxonomical classification.

Cognitive Psychology: In our study we apply techniques
from previous work in the visual cognition community on evaluating
the memorability of natural images of objects and scenes [9, 21, 20].
These studies have demonstrated that the differences in the memora-
bility of different images are consistent across observers, which im-
plies that memorability is an intrinsic property of an image [21, 20].
Brady et al. [9] tested the long-term memory capacity for storing de-
tails by detecting repeat object images when shown pairs of objects,
one old and one new. They found that participants were accurate in
detecting repeats with minimal false alarms, indicating that human vi-
sual memory has a higher storage capacity for minute details than was
previously thought.

More recently, Isola et al. have annotated natural images with
attributes, measured memorability, and performed feature selection,
showing that certain features are good indicators of memorabil-
ity [20, 21]. Memorability was measured by launching a “Memory
Game” on Amazon Mechanical Turk, in which participants were pre-
sented with a sequence of images and instructed to press a key when
they saw a repeat image in the sequence. The results showed that there
was consistency across the different participants, and that people and
human-scale objects in the images contribute positively to the mem-
orability of scenes. That work also showed that unusual layouts and
aesthetic beauty were not overall associated with high memorability
across a dataset of everyday photos [20].

In our study we apply the same methods of measuring memora-
bility to visualizations. In contrast to the prior work that focused on
natural images and real-world objects, visualizations are artificial rep-
resentations of data. Our study contributes not only to the field of



Table 1. Summary of our visualization taxonomy, including visualization properties and attributes, for the memorability experiment. See supple-
mental material for the full version of the taxonomy with sample figures.

CATEGORY SUBTYPES
Area Area Chart (Area Chart, Overlapped Area Chart, Stacked Area Chart); Proportional Area Chart (Aligned Area Chart, Centered Area

Chart, Overlapped Area Chart, Stacked and Linked Area Chart)
Bar Bar Chart (Bar Chart, Grouped Bar Chart, Stacked Bar Chart, Circular Bar Chart, Waterfall Chart, Bullet Graph)
Circle Belt Chart; Donut Chart; Pie Chart; Sector Graph
Diagram Flow Chart; Illustration or Rendering; Sankey Diagram; Timeline; Venn Diagram
Distribution Box-and-Whisker Plot; Distribution Curve; Dot Array; Histogram; Point Graph; Stem-and-Leaf Plot; Stripe Graph; Tally Graph
Grid & Matrix Heatmap
Line Contour Graph; Density Graph; Line Graph (Line Graph, Circular Line Graph, Trend Line (and Residual Graph) ); Slopegraph; Star

Plot; Surface Graph; Vector Graph
Map Flow Map; Geographic Map (Geographic Map, Street Map); Statistical Map (Choropleth Map, Contour Map, Distorted Map, Plotted

Map)
Point Dot Plot; Scatter Plot (Bubble Graph, Scatter Plot, (Trend Line and) Residual Graph, Trilinear Scatter Plot)
Table Table; Text Chart
Text Phrase Net; Word Cloud; Word Tree
Trees & Networks Trees and Networks (Graph, Matrix Representation, Tree, Treemap); Hive Graph; Hierarchical Edge Bundling
Properties Dimension (2D; 3D), Multiplicity (Single; Multiple; Grouped; Multi-panel; Small Multiples; Combination), Pictorial (Pictorial;

Pictorial Unit), Time (Time Series)
Attributes Black & White [yes, no], Number of Distinct Colors [1, 2-6, ≥7], Data-Ink Ratio [good, medium, bad], Visual Density [low, medium,

high], Human Recognizable Objects [yes, no], Human Depiction [yes, no]

visualization but also adds memorability results for artificial images to
the cognitive psychology literature.

3 VISUALIZATION TAXONOMY

In order to address the span of visualization types we found across
visualization sources we created a new taxonomy for static (i.e., non-
interactive) visualizations. The taxonomy classifies static visualiza-
tions according to the underlying data structures, the visual encod-
ing of the data, and the perceptual tasks enabled by these encodings.
It contains twelve main visualization categories and several popular
sub-types for each category. In addition, we supply a set of proper-
ties that aid in the characterization of the visualizations. This taxon-
omy draws from the comprehensive vocabulary of information graph-
ics presented in Harris [15], the emphasis on syntactic structure and
information type in graphic representation by Englehardt [12], and
the results of Cleveland and McGill in understanding human graph-
ical perception [11]. A full break-down of the taxonomy and several
visual properties is shown in Table 1. A visual version of this table
with several examples is provided in the supplemental material.

The properties are additional visual encodings that may apply to
any of the visualization categories. Each property may also have sub-
categories. Dimension represents the number of dimensions (i.e., 2D
or 3D) of the visual encoding. Multiplicity defines whether the visual-
ization is stand-alone (single) or somehow grouped with other visual-
izations (multiple). We distinguish several cases of multiple visualiza-
tions. Grouped means multiple overlapping/superimposed visualiza-
tions, such as grouped bar charts; multi-panel indicates a graphic that
contains multiple related visualizations as part of a single narrative;
and combination indicates a graph with two or more superimposed
visualization categories (e.g., a line plot over a bar graph). The pic-
torial property indicates that the encoding is a pictogram (e.g., a pic-
torial bar chart). Pictorial unit means that the individual pictograms
represent units of data, such as the Istotype (International System of
Typographic Picture Education), a form of infographics based on pic-
tograms developed by Otto Neurath at the turn of the 19th century [29].
Finally, time is included, specifically as a time series, as it is such a
common feature of visualizations and dictates specific visual encod-
ing aspects regarding data encoding and ordering. Visual examples of
all these properties can be found in the supplemental material.

In order to gain insight into the effect of different visualization qual-
ities on memorability we also defined a series of visual attributes that
we use for analysis in our memorability experiment (Sec. 6). The first

Table 2. List of visualization sources, their websites, and the respective
number of visualizations in the database.

Source Total Website(s) Per website
(single) (single)

Government / World
Organizations

607 (528) US Treasury Dept. 141 (117)

World Health Or-
ganization (WHO)

464 (411)

News Media 1187 (704) Wall Street Journal 609 (309)
Economist 519 (378)
National Post 55 (17)

Infographics 1721 (490) Visual.ly 1721 (490)
Scientific Publica-
tions

2,178 (348) Nature 2,178 (348)

TOTAL 5,693 (2,070)

two attributes, black & white and number of distinct colors give a gen-
eral sense of the amount of color in a visualization. A measure of
chart junk and minimalism is encapsulated in Edward Tufte’s data-ink
ratio metric [37], which approximates the ratio of data to non-data el-
ements. The visual density rates the overall density of visual elements
in the image without distinguishing between data and non-data ele-
ments. Finally, we have two binary attributes to identify pictograms,
photos, or logos: human recognizable objects and human depiction.
We explicitly chose to have a separate category for human depictions
due to prior research indicating that the presence of a human in a photo
has a strong effect on memorability [21]. These attributes are separate
from the properties in our taxonomy as they are subjective measures
and are not tied to the data encodings.

4 DATA COLLECTION AND ANNOTATION

In order to have a large number of real world examples for our mem-
orability experiment we scraped the web to collect 5,693 data visual-
izations. To ensure a breadth of visualization types, design aesthetics,
and visualization domains, we focused on the visualization sources
listed in Table 2. These particular web sites were chosen because each
contained a large number of static visualizations that could be auto-
matically scraped without requiring a large manual clean-up effort.
We noticed that certain visualization sources (in particular newspapers
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Fig. 2. Breakdown of visualization categories by visualization sources based on 2,070 single, static visualizations.

and magazines) do not provide many of their only-in-print visualiza-
tions in digital form online. Also, some websites could not be scraped
as their websites were poorly structured or constantly changing in an
inconsistent manner. Finally, we chose to include only one source for
infographics (Visual.ly) since most infographics websites cross-post
the same images, thus leading to an excessively high rate of duplicate
visualizations.

All of the 5,693 visualizations were manually categorized as single
or multiple. Many of the infographics visualizations were categorized
as multiple and were excluded from the study. In total we identified
2,070 single visualizations, i.e., stand-alone visualizations with one
panel. They were further annotated with the twelve main categories
of our taxonomy (Table 1) plus the binary property pictorial to iden-
tify images with human-recognizable elements. The annotations were
done by ten Harvard University undergraduates who had completed
the Harvard introductory visualization course. The students received
an introduction to the taxonomy and were monetarily compensated for
their work. In the future we plan to further annotate our database with
all the graph sub-types and properties of our taxonomy using Ama-
zon’s Mechanical Turk.

5 ANALYSIS OF VISUALIZATION TYPES

Our annotated data enables us to study the distribution of online visu-
alization types across publication venues. Examining the ratio of sin-
gle to multiple visualization images per source, as shown in Table 2,
we see that visualizations categorized as multiple tend to be most nu-
merous in scientific publications and infographic sources. These mul-
tipanel visualizations are primarily used when narrative is involved,
and having multiple visualizations are necessary for, e.g., explaining a
concept or telling a story. These visualizations are usually designed to
stand alone, without an associated article or paper, and thus are fully
responsible for telling and encompassing the whole story. There is
also a very high percentage of multiple visualizations in the scientific
publication category. There are two primary explanations for this ob-
servation. First, like infographics, multiple individual visualizations
are combined in a single figure in order to visually explain scientific
concepts or theories to the journal readers. Second, combining visual-
izations into a single figure (even if possibly not directly related) saves
page count and money. In contrast, a very high ratio of single visual-
izations is seen in government / world organizations. These visualiza-
tions are usually published one-at-a-time within government reports,
and there are no page limits or space issues as with scientific journals.

Analyzing the single visualizations, we see distinct trends of visual-
ization categories between visualization publication venues as shown

in Figure 2. Scientific publications, for example, have a large per-
centage of diagrams. These diagrams are primarily used to explain
concepts from the article, or illustrate the results or theories. Also in-
cluded are renderings (e.g., 3D molecular diagrams). The scientific
articles also use many basic visual encoding techniques, such as line
graphs, bar charts, and point plots. Domain-specific uses of certain
visual encodings are evident, e.g., grid and matrix plots for biological
heat maps, trees and networks for phylogenic trees, etc. Infograph-
ics also use a large percentage of diagrams. These diagrams primarily
include flow charts and timelines. Also included in infographics is
a large percentage of tables. These are commonly simple tables or
ranked lists that are elaborately decorated and annotated with illustra-
tions. Unlike the other categories, there is little use of line graphs.

In contrast to the scientific and infographic sources, the news me-
dia and government sources publish a more focused range of topics,
thus employing similar visualization strategies. Both sources primar-
ily rely on bar charts and other “common” (i.e., learnt in primary
school) forms of visual encodings such as line graphs, maps, and ta-
bles. The line graphs are most commonly time series, e.g., of financial
data. One of the interesting differences between the categories include
the greater use of circle plots (e.g., pie charts) in government reports.

Looking at specific visualization categories, tree and network dia-
grams only appear in scientific and infographic publications. This is
probably due to the fact that the other publication venues do not pub-
lish data that is best represented as trees or networks. Similarly, grid
and matrix plots are primarily used to encode appropriate data in the
scientific context. Interestingly, point plots are also primarily used in
scientific publications. This may be due to either the fact that the data
being visualized are indeed best visualized as point plot representa-
tions, or it could be due to domain-specific visualization conventions,
e.g., in statistics.

Worth noting is the absence of text visualizations from almost all
publication venues. The only examples of text based visualizations
were observed in the news media. Their absence may be explained by
the fact that their data, i.e., text, is not relevant to the topics published
by most sources. Another possible explanation is that text visualiza-
tions are not as “main stream” in any of the visualization sources we
examined as compared to other visualization types. Also worth noting
is that these are observations for single, static visualizations. The dis-
tributions in Figure 2 may look very different if they included, or were
focused solely on, interactive or multiple visualizations.

The distribution of visualizations in this database represents a snap-
shot of the distributions of visualization types “in the wild.” With a
database of this size and breadth we can now attempt to answer the



question of what makes a visualization memorable. Understanding
memorability may also shed light on some of the strategies employed
by the different publication venues. For example, unlike the readers of
scientific journals and government reports who are already interested
in the text and are pre-motivated to examine the sources, both info-
graphic and news media outlets need to engage their audiences and
capture their attention. Are they possibly employing visual strategies
that help with memorability? Or are they employing strategies that
they think will make a visualization memorable, but in fact are ineffec-
tive? To answer these and other questions we designed a memorability
experiment discussed in the following sections.

6 MEMORABILITY EXPERIMENT

We ran our memorability experiment using workers on Amazon’s Me-
chanical Turk to maintain high external validity (i.e., provide us with
a diverse pool of participants for the experiment).

6.1 Hypotheses
Based on the authors’ experience in practicing visualization, our hy-
potheses entering the experiment were:

H.1 Participants will perform worse (i.e., overall have a harder
time remembering visualizations) as compared to natural im-
ages/photos.

H.2 A visualization is more memorable if it includes a pictogram or
cartoon of a recognizable image.

H.3 A visualization is more memorable if there is more color.

H.4 A visualization is more memorable if it has low visual density.

H.5 A visualization is more memorable if it is more “minimalist”
(i.e., “good” data-ink ratio).

H.6 A visualization is more memorable if it includes a “familiar” vi-
sualization type (i.e., basic graph type taught in school).

H.7 A visualization is less memorable if it comes from a scientific
publication venue.

6.2 Target images
We selected a subset of 410 images (∼20% of the single-panel images
in our database, Sec. 4) to be “target” visualizations. The attribute
rankings (Sec. 3) for the target visualizations were generated by three
visualization researchers. Each researcher independently rated the at-
tributes for each visualization. In cases when all three researchers gave
different rankings, the visualization was reviewed and discussed by all
three researchers until a consensus was reached. If a majority of two
out of three researchers agreed their ranking was applied.

Of the 410 target visualizations, 145 are extreme examples of “min-
imalist” (i.e., data-ink ratio = “good”), 103 are extreme examples of
“chart junk” (i.e., data-ink ratio = “bad”), and the other 162 are in-
between on the spectrum (i.e., data-ink ratio = “medium”). Choosing
them this way allows us to measure the effects of chart junk, among
other attributes, without introducing bias. The target visualizations
were also chosen to match the distribution of original visualization
sources as well as the distribution of visualization categories of the to-
tal 2,070 single-panel visualization population (Fig. 2). Thus the target
population is representative of the observed diversity of real-world vi-
sualization types.

6.3 Participants and Experimental Set-up
The methodology closely followed that of Isola et al. [21] for mea-
suring scene memorability. The experiment was set up as a game on
Amazon Mechanical Turk, where workers were presented with a se-
quence of images, and had to press a key if they saw an image for
the second time in the sequence. The repeated images were the tar-
get images of which we had 410, and the rest of the sequence was
composed of “filler” images (i.e., the rest of all the single-panel visu-
alizations in the database). Workers could complete up to 17 “levels”

of the game, each comprised of about 120 images (targets and fillers)
and taking about 4.8 minutes to complete. There was no change in
difficulty across the levels, rather they were a way of partitioning the
image stream and giving workers the option of taking a break (up to
5 minutes). Workers were paid $0.40 for each successfully-completed
level, bringing their possible hourly wage up to almost $5. Workers
could exit the game at any time, and were paid for the total amount
of the game completed (including partially-completed levels). Upon
completing a level, workers could see their average score (i.e., percent
correctly-remembered images) for the level.

Target images were the ones for which we were interested in mea-
suring memorability. The rest of the image sequence was filled with
vigilance repeats and other filler images. Vigilance repeats consisted
of an image repeated twice, with a spacing of 1-7 images, and were
meant to be easy to detect. This was implemented to screen out work-
ers that were not paying enough attention to the task. If a worker
false-alarmed on more than 50% of the last 30 non-repeat images, the
game would end, and the worker would be flagged. If flagged three
times, a worker would be paid for the part of the game completed, and
would be blocked from further participation.

Images in the sequence were presented for 1 second, with a 1.4
second gap between consecutive images. These sequences contained a
different ordering of images for each worker. Images were presented a
maximum of 2 times throughout the whole image sequence, and all the
repeat images appeared 91-109 images apart. For our experiment, all
images were resized to lie within a maximum dimension of 512×512
pixels (while preserving aspect ratios), so as to fit comfortably into a
webpage containing the memorability game.

To begin the game, workers had to complete a practice trial with 30
images. Until a worker’s miss rate on the practice fell below 50% and
the false alarm rate fell below 30%, the worker could not continue on
to the real game. A worker who failed the practice three times would
be paid $0.02 for the practice, and blocked from the game.

On Amazon Mechanical Turk, we posted 276 HITs (“Human Intel-
ligence Tasks”), each of which consisted of our game with 17 possible
levels. To accept one of our HITs, a worker had to have an approval
rate of over 95% in Amazon’s system as a quality check. Of the work-
ers who accepted our HITs, 261 passed the practice. Workers were
able to accept the HIT multiple times and pick up where they left off
(until either all 17 levels were completed or the worker failed the qual-
ity screening described above). Of the 261 workers, 57% saw more
than 90% of the target images. The rest completed fewer of the levels.
On average, we have 87 responses (SD: 4.3) per target image. The age
range of our workers spanned 16 to 66 years, and the mean age was
33.1 (SD: 10.5). The race distribution was: 41.7% Caucasian, 37.5%
South Asian, 4.2% African, 4.2% East Asian, 1.1% Hispanic, and
11.3% other/unreported. We did not collect any other demographic
information from our workers.

Because we did not restrict participation in our task based on any
worker demographics, we believe that we have sampled fairly from the
Mechanical Turk worker population. Other studies have surveyed the
Mechanical Turk population, and have determined the education and
income of the workers to be quite diverse, reporting that the majority of
workers earn roughly U.S. $30k per year, and almost half have earned
a bachelor’s degree [34, 28].

6.4 Experimental Design & Analysis
Performance Metrics: Workers saw each target image at most

2 times (less than twice if they prematurely exited the game). We
measure an image’s hit rate (HR) as the proportion of times work-
ers responded on the second (repeat) presentation of the image. In
signal detection terms: HR = HIT S

HIT S+MISSES . We also measured how
many times workers responded on the first presentation of the image.
This corresponds to workers thinking they have seen the image before,
even though they have not. This false alarm rate (FAR) is calculated:
FAR = FA

FA+CR , where FA is the number of false alarms and CR is the
number of correct rejections (the absense of a response).

For performing a relative sorting of our data instances we used
the d-prime metric (otherwise called the sensitivity index). This is



a common metric used in signal detection theory, which takes into
account both the signal and noise of a data source, calculated as:
d′ = Z(HR)− Z(FAR) (where Z is the inverse cumulative Gaussian
distribution). A higher d′ corresponds to a signal being more readily
detected. Thus, we can use this as a memorability score for our visu-
alizations. A high score will require the HR to be high and the FAR
to be low. This will ensure that visualizations that are easily confused
for others (high FAR) will have a lower memorability score.

Data Analysis: Of the 410 target visualizations selected for the
memorability experiment, 17 were subsequently filtered out because
their aspect ratios were deemed too skewed for the comparison to other
visualizations to be fair. Visualizations with aspect ratio greater than
3:1 made the text hard to read, and pictographic elements hard to deci-
pher. An initial analysis showed that these images ended up with high
FAR, being confused for one another (losing their distinctiveness to
aspect ratio similarities).

A set of analyses was run on the remaining images, whereby
memorability score was plotted against various visualization attributes
(Sec. 3). The plots were constructed by summarizing across all
the visualizations, and also by individually considering visualization
sources: government / world organizations, news media, infographics,
and scientific publications. This was done to see whether there are
differences in how the attributes correlate with memorability across
different publication venues. To filter out the effect recognizable ele-
ments like people and objects have on memorability, the analyses were
repeated by only considering visualizations that did not contain picto-
rial elements (filtered-out manually).

As d-prime is a normalized metric, corrected t-tests were applied
in Sec. 7 to evaluate the statistical significance of the memorability
scores of the different attributes, visualization types, and visualization
sources.

7 EXPERIMENTAL RESULTS & DISCUSSION

7.1 Memorability comparisons

Our memorability experiment was designed to understand the memo-
rability of visualizations within the context of other memorability stud-
ies, and treats the visualizations in our experiment as scenes (i.e., im-
ages or photographs). This memorability study design does not eval-
uate the cognitive impact or engagement of the visualization. Our ex-
periment primarily presents baseline results to compare the memora-
bility of visualizations to the memorability of scenes. In other words,
we have measured how visualizations would be remembered if they
were images.

We observed a mean HR of 55.36% (SD = 16.51%) and mean
FAR of 13.17% (SD = 10.73%). For comparison, scene memorabil-
ity has a mean HR of 67.5% (SD = 13.6%) with mean FAR of 10.7%
(SD = 7.6%) [21], and face memorability has a mean HR of 53.6%
(SD = 14.3%) with mean FAR of 14.5%(SD = 9.9%) [2]. This possi-
bly supports our first hypothesis that visualizations are less memorable
than natural scenes. This demonstrates that there is memorability con-
sistency with scenes, faces, and also visualizations, thus memorability
is a generic principle with possibly similar generic, abstract, features.

We also measured the consistency of our memorability scores [2,
21]. By splitting the participants into two independent groups, we can
measure how well the memorability scores of one group on all the tar-
get images compare to the scores of another group (Fig. 3). Averaging
over 25 such random half-splits, we obtain Spearman’s rank correla-
tions of 0.83 for HR, 0.78 for FAR, and 0.81 for d-prime, the latter of
which is plotted in Fig. 3. This high correlation demonstrates that the
memorability of a visualization is a consistent measure across partic-
ipants, and indicates real differences in memorability between visual-
izations. In other words, despite the noise introduced by worker vari-
ability and by showing different image sequences to different workers,
we can nevertheless show that memorability is somehow intrinsic to
the visualizations.
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Group 1: r = 1.00
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Fig. 3. Participants were split into two independent sets, Group 1 and
Group 2. Visualizations were ranked by memorability scores (d-prime)
from participants in Group 1 (green line) or Group 2 (blue line) and plot-
ted against the average memorability scores given by participants in
Group 1. Plots are averaged across 25 such random splits. For clarity,
we also convolved the resulting plots with a length-25 box filter along the
x-axis. The cyan chance line was simulated by assigning the images
random ranks (i.e., randomly permuting the x-axis). Error bars depict
80% confidence intervals. Note that the scores of the two participant
halves are highly correlated over the 25 random half-splits.

7.2 Visualization Attributes

Of our 410 target visualizations, 145 contained either photographs,
cartoons, or other pictograms of human recognizable objects (from
here on out referred to broadly as “pictograms”). Visualiza-
tions containing pictograms have on average a higher memorabil-
ity score (Mean (M)=1.93) than visualizations without pictograms
(M = 1.14, t(297) = 13.67, p < 0.001). This supports our second hy-
pothesis. Thus not all chart junk is created equal: annotations and
representations containing pictograms are across the board more mem-
orable. However, this is not too surprising as we are evolved to see,
segment, and recognize natural objects. Thus an image, or image of
a visualization, containing a human recognizable object will be easily
recognizable and probably memorable.

Due to this strong main effect of pictograms, we examined our re-
sults for both the cases of visualizations with and without pictograms.
As shown in the left-most panel of Fig. 1, all but one of the overall
top most memorable images (as ranked by their d-prime scores) con-
tain human recognizable pictograms. The one visualization without
a human recognizable image, the molecular diagram in the middle of
the second row, is the most memorable image of our non-pictogram
visualizations (see Fig. 1, middle panel). The least memorable visual-
izations are presented in the right-most panel of Fig. 1.

As shown in Fig. 4, there is an observable trend of more colorful
visualizations having a higher memorability score: visualizations with
7 or more colors have a higher memorability score (M = 1.71) than vi-
sualizations with 2-6 colors (M = 1.48, t(285) = 3.97, p < 0.001), and
even more than visualizations with 1 color or black-and-white gradient
(M = 1.18, t(220) = 6.38, p < 0.001). When we remove visualizations
with pictograms, the difference between visualizations with 7 or more
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Fig. 7. Memorability scores for visualizations based on visualization type. On the left is all visualizations, and on the right visualizations with
pictograms removed.

With Pic
Number of Distinct Colors
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Number of Distinct Colors
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Memorability plotted against color rating

Fig. 4. Memorability scores for visualizations based on the number of
colors it contains. On the left is all visualizations, and on the right visu-
alizations with pictograms removed.

colors (M = 1.34) and those that have only 1 color (M = 1.00) remains
statistically significant (t(71) = 3.61, p < 0.001).

Considering all the visualizations together, we observed a statisti-
cally significant effect of visual density on memorability scores with
a high visual density rating of “3” (M = 1.83), i.e., very dense, being
greater than a low visual density rating of “1” (M = 1.28, t(115) =
6.08, p < 0.001) as shown in Fig. 5.

We also observed a statistically significant effect of the data-to-
ink ratio attribute on memorability scores with a “bad” (M = 1.81),
i.e., low data-to-ink ratio, being higher than a “good” rating (M =
1.23, t(208) = 6.92, p < 0.001) as shown in Fig. 6. Note that using a
corrected t-test, we also arrive at the results that the 3 levels of data-ink
ratio are pairwise significantly different from each-other .

Summarizing all of these attribute results: higher memorabil-
ity scores were correlated with visualizations containing pictograms,
more color, low data-to-ink ratios, and high visual densities. This sup-
ports our third hypothesis, and refutes our fourth and fifth hypotheses.
However, as discussed in Sec. 7.1, we tested the memorability of visu-

With Pic

LowMediumHigh

Without Pic

LowMediumHigh

Memorability plotted against visual density ranking

Fig. 5. Memorability scores for visualizations based on visual density.
On the left is all visualizations, and on the right visualizations with pic-
tograms removed.

alizations as images and not the comprehension of the visualizations.
Thus, looking at these visualizations as images and not data encodings,
these attributes increased their memorability.

As shown in Fig. 7, diagrams were statistically more memorable
than points, bars, lines, and tables. These trends remain observable
even when visualizations with pictograms are removed from the data.
Other than some minor ranking differences and addition of the map
category, the main difference is in the ranking of the table visualization
type, which without pictograms becomes least memorable.

The middle panel of Fig. 1 displays the most memorable visual-
izations that do not contain pictograms. Why are these visualiza-
tions more memorable than the ones in the right-most panel? To start
with, qualitatively viewing the most memorable visualizations, most
are high contrast. These images also all have more color, a trend
quantitatively demonstrated in Sec. 7.2 to be correlated with higher
memorability. As compared to the more subdued less memorable vi-
sualizations, the more memorable visualizations are easier to see and
discriminate as images. Another possible explanation is that “unique”
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Memorability plotted against data-ink ratio

Fig. 6. Memorability scores for visualizations based on the data-to-ink
attribute ratings. On the left is all visualizations, and on the right visual-
izations with pictograms removed.

types of visualizations, such as diagrams, are more memorable than
“common” types of visualizations, such as bar charts. This trend is
also evident in Fig. 7 in which grid/matrix, trees and networks, and di-
agrams have the highest memorability scores. This observation refutes
our sixth hypothesis. Examples of these unique types of visualizations
are each individual and unique, whereas bar charts and line graphs are
uniform with limited variability in their visual encoding methodology.
Previously it has been shown that an item is more likely to interfere
with another item if it has similar category or subordinate category in-
formation, but unique exemplars of objects can be encoded in memory
quite well [22]. This supports our findings that show high FAR and low
HR for table and bar visualizations, which both have very similar vi-
suals within their category (i.e., all the bar charts look alike). Another
contributing factor is that target visualizations represented a distribu-
tion of types found “in the wild.” Thus, of the 410 target visualizations,
trees and networks totaled 11 targets and grid/matrix totaled 6 targets.
Thus their low frequency may have contributed to their uniqueness.
However, this was not the case for diagrams, which constituted 57 of
the target visualizations.

Another possible explanation is that visualizations like bar and line
graphs are just not natural. If image memorability is correlated with
the ability to recognize natural, or natural looking, objects then people
may see diagrams, radial plots, or heat maps as looking more “natu-
ral”. Previous work has shown that people can rapidly identify com-
mon objects or concepts, referred to as processing fluency, and that
prior expectations will influence a person’s performance [31]. Since
we are mostly attuned to natural scenes, it makes sense that some of the
top memorable visualizations look closer to “nature” than the others.
In these terms, we see that people may have more perceptual fluency
with visualizations that at first glance appear to be more “natural” and
that this fluency may be influencing memorability.

One common visual aspect of the most memorable visualizations is
the prevalence of circles and round edges. Previous work has demon-
strated that people’s emotions are more positive toward rounded cor-
ners than sharp corners [3]. This could possibly support both the trend
of circular features in the memorable images as well as the concept of
natural-looking visualizations being more memorable since “natural”
things tend to be round.

7.3 Visualization Sources
As shown in Fig. 8, regardless of whether the visualizations did or
did not include pictograms, the visualization source with the highest
memorability score was the infographic category (M = 1.99, t(147) =
5.96, p < 0.001 when compared to the next highest category, scien-
tific publications with M = 1.48), and the visualization source with

Memorability plotted against visualization source category

With Pic Without Pic

Fig. 8. Memorability scores for visualizations based on original source
category. On the left is all visualizations, and on the right visualizations
with pictograms removed.

the lowest memorability score was the government and world organi-
zations category (M = 0.86, t(220) = 8.46, p < 0.001 when compared
to the next lowest category, news media with M = 1.46). These re-
sults were significant according to corrected t-tests. Note that these
statistically-significant trends hold even with visualizations containing
pictograms removed. In fact, with pictograms removed, scientific pub-
lications (M = 1.95) become significantly more memorable than news
media (M = 1.17, t(23) = 6.92, p < 0.001). The top ten most memo-
rable visualizations from each source category are shown in Fig. 9.

A few things to bear in mind: first of all, as previously stated, this
memorability study examined the memorability of visualizations as
if they were images and not memorability based on engagement and
comprehension of the visualization. Secondly, the visualizations in
this category were drawn from Visual.ly with a more design focused
venue and audience where the visualizations are intentionally created
to be flashy and include stylized elements. Another factor is that vi-
sualizations are submitted to Visual.ly and are pre-judged by people
before being published. In contrast, the other venues contain a more
unbiased and not pre-judged selection of visualizations. The visualiza-
tions for a source such as Visual.ly, or even other news media sites, are
competing for a viewer’s attention. Thus they will probably be more
likely, intentionally or unintentionally, to use bright, bold, pictorial vi-
sual elements to grab a reader’s attention. Thus this type of publication
venue’s motivational bias may translate into design features that lead
to higher memorability.

Another possible influence of visualization source on memorabil-
ity score is publication venue specific aesthetics. Many visualizations,
particularly those from the news media and government sources, tend
to publish with the same visual aesthetic style. This may be due to
either the venue maintaining a consistent look so viewers will auto-
matically recognize that a visualization was published by them, or be-
cause they have editorial standards to create visualizations that appear
similar. This may have a negative impact on memorability scores be-
cause visualizations of similar aesthetics lack uniqueness. This may
be a contributing factor to the observed trend (see Fig. 8) that visual-
ization sources that have non-uniform aesthetics tend to have higher
memorability scores than sources with uniform aesthetics. This ob-
servation refutes our last hypothesis that visualizations from scientific
publications are less memorable. This may also be due to the fact
that visualizations in scientific publications have a high percentage of
diagrams (Fig. 2), similar to the infographic category.

8 CONCLUSIONS AND FUTURE WORK

The results of our memorability experiment show that visualizations
are intrinsically memorable with consistency across people. They are



Fig. 9. The top ten most memorable visualizations for each of the four visualization source categories: infographic (top left), scientific publications
(top right), news media (bottom left), and government / world organization (bottom right). In each quadrant, the visualizations are ordered most to
least memorable from top left to bottom right.

less memorable than natural scenes, but similar to images of faces,
which may hint at generic, abstract, features of human memory. Not
surprisingly, attributes such as color and the inclusion of a human rec-
ognizable object enhance memorability. And similar to previous stud-
ies we found that visualizations with low data-to-ink ratios and high
visual densities (i.e., more chart junk and “clutter”) were more memo-
rable than minimal, “clean” visualizations. It appears that we are best
at remembering “natural” looking visualizations, as they are similar
to scenes, objects, and people, and that pictorial and rounded features
help memorability.

More surprisingly, we found that unique visualization types (pic-
toral, grid/matrix, trees and networks, and diagrams) had significantly
higher memorability scores than common graphs (circles, area, points,
bars, and lines). It appears that novel and unexpected visualizations
can be better remembered than the visualizations with limited vari-
ability that we are exposed to since elementary school. In hindsight
this finding is consistent with results for natural scenes and objects.

Our results seem to validate the opinions of proponents on both
sides of the chart junk debate. Edward Tufte says: “All the history
of information displays and statistical graphics – indeed of any com-
munication device – is entirely a progress of methods for enhancing
density, complexity, dimensionality, and even sometimes beauty.” [37]
And Nigel Holmes states: “As long as the artist understands that the
primary function is to convey statistics and respects that duty, then
you can have fun (or be serious) with the image; that is, the form in
which these statistics appear.” [18] We believe that visualizations are
what Alberto Cairo calls a Functional Art: “something that achieves
beauty not through the subjective, freely wandering self-expression of
the painter or sculptor, but through the careful and restrained tinkering
of the engineer.” [10] But it appears that the artist and designer can
have a big influence in making visualizations more memorable.

Understanding what makes a visualization memorable is only the
first step to understanding how to create effective data presentations.
Making a visualization more memorable means making some part of
the visualization “stick” in the viewers mind. We do not want just any
part of the visualization to stick (e.g., chart junk), but rather we want
the most important relevant aspects of the data or trend the author is
trying to convey to stick. If we can accomplish this, then we will have
a method for making data more memorable. This will have diverse
applications in education, business, and more generally, in how data is
presented to wide audiences.

In future work we hope to gain further understanding of the mem-

orability of visualizations. This would include expanding our visu-
alization database in order to gain an even more diverse real world
sample, annotating more of the images with all visualization types and
attributes of our taxonomy in order to better understand the memora-
bility subtleties of specific types or subtypes of visualizations, anno-
tating visualizations with more fine-grained definitions and measures
of visual density, and investigating how memorability is impacted by
multiple visualizations (e.g., small multiples or multi-panel visualiza-
tions). We plan to investigate the effect of time on memorability of
visualizations, and investigate whether certain visual features stick in
the viewers mind longer than others. A particular category worth in-
vestigating further is pictograms. We would like to break this category
down into subtypes to look for specific effects on memorability. We
also hope to show in future work that memorability – i.e., treating
visualizations as scenes – does not necessarily translate to an under-
standing of the visualizations themselves. Nor does excessive visual
clutter aid comprehension of the actual information in the visualiza-
tion (and may instead interfere with it). Finally, we hope to conduct
eye movement studies to identify the parts of visualizations used for
memory or comprehension.

Having a more solid understanding of the memorability of visual-
izations will also allow us to carefully craft future studies to ask the
more important and interesting questions of what makes a visualiza-
tion comprehensible, engaging, or impactful. With a more solid grasp
of what visual elements impact memorability at a low level, we can
control for them at a higher level so as not to interfere with other fac-
tors in future experiments. We will then be able to start answering the
larger questions of how to design effective visualizations.
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