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Are real-world objects represented as bound units? Although a great deal of research has examined
binding between the feature dimensions of simple shapes, little work has examined whether the featural
properties of real-world objects are stored in a single unitary object representation. In a first experiment,
we found that information about an object’s color is forgotten more rapidly than the information about
an object’s state (e.g., open, closed), suggesting that observers do not forget objects as entirely bound
units. In a second and third experiment, we examined whether state and exemplar information are
forgotten separately or together. If these properties are forgotten separately, the probability of getting one
feature correct should be independent of whether the other feature was correct. We found that after a short
delay, observers frequently remember both state and exemplar information about the same objects, but
after a longer delay, memory for the two properties becomes independent. This indicates that information
about object state and exemplar are forgotten separately over time. We thus conclude that real-world
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objects are not represented in a single unitary representation in visual memory.
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When we perceive a visual scene, we experience an organized
and coherent set of objects and surfaces, not the disjointed patches
of color or light that fall on the retina. We also appear to remember
coherent, meaningful units: Moments after perceiving an office
scene, for example, we might remember seeing objects such as a
chair, a cup, and a person. In our subjective experience, it may
seem that we perceive and remember each object as a coherent and
integrated unit. However, a central question at the core of object
representation is whether an object is actually represented as a
completely bound unit, or whether it is represented with separable
properties or dimensions.

Research on visual working memory has often claimed that the
units of memory representation are bound objects (e.g., Cowan,
2001; Gajewski & Brockmole, 2006; Luck & Vogel, 1997; Vogel,
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Woodman, & Luck, 2001). For example, in their seminal study
Luck and Vogel (1997) found that observers are equally good at
remembering simple objects that vary along four features (color,
size, orientation, and shape) as objects that vary along only a single
feature (color or orientation alone), suggesting that working mem-
ory capacity may be limited by the number of objects rather than
the number of visual features that can be stored. This suggests that
the units of memory are bound object representations. Since Luck
and Vogel, this strong object-based account of working memory
representations has been shown to be too strong (e.g., Olson &
Jiang, 2002; Wheeler & Treisman, 2002), but a significant amount
of data nevertheless demonstrates a benefit to encoding multiple
features of the same object (Fougnie, Asplund, & Marois, 2010;
Luria & Vogel, 2011; Olson & Jiang, 2002; Xu, 2002), supporting
the claim that visual working memory is at least partly object
limited rather than limited only by storage of independent visual
features (for a review, see Brady, Konkle, & Alvarez, 2011).
However, there is also strong evidence that memory representa-
tions are not truly stored as a bound unit, and different features can
be represented independently over short delays (Fougnie & Alva-
rez, 2011; Stefurak & Boynton, 1986) or long delays (Hanna &
Remington, 1996).

Most of the work on the boundedness of object representation
has examined only very simple objects made up of geometric
shapes and colors. Much less work has examined whether real-
world objects are represented as bound units. Because familiar
real-world objects are more natural stimuli for the visual system,
they might have more bound representations than objects that are
made up of entirely dissociable low-level features that seem to be
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stored independently even at the lowest levels of the visual system
(e.g., orientation, color, spatial frequency; Magnussen, 2000) and
that can be attended separately at encoding (Maunsell & Treue,
2006). Research on object recognition and long-term memory
provide some proposals regarding the underlying representations
of real-world objects (e.g., Diana, Yonelinas, & Ranganath, 2007;
DiCarlo & Cox, 2007; Hummel, 2000; Riesenhuber & Poggio,
2000). In particular, these models typically assume “bound” rep-
resentations of real-world objects. For example, view-based mod-
els of object representation tend to treat object representations as
holistic, as storing a snapshot of an object from a particular view
necessarily includes all the properties of that object in a single
representation (Biilthoff & Edelman, 1992; Riesenhuber & Poggio,
1999; Tarr & Biilthoff, 1995). Further, most approaches to object
recognition start from the assumption that object representations
are independent of factors like lighting and size and rotation, but
include all of the object’s parts and properties together as the
end-state of the ventral visual pathway (e.g., DiCarlo & Cox,
2007).

Similarly, long-term memory research typically makes a dis-
tinction between familiarity—a kind of holistic item memory—
and recollection, or memory for the episodic details and context of
an item (Diana et al., 2007; Ranganath, Yonelinas, et al., 2004).
This distinction implicitly treats objects as unitary, where famil-
iarity processes operate over object representations that do not
require any binding, while recollection processes help retrieve
information about how objects are bound to their contexts.

Thus, much of the existing literature—from object recognition,
long-term memory, and visual working memory—treats real-world
objects as though they are represented as a single bound unit.
However, existing research on object representation does not di-
rectly address whether features of real-world objects are stored
independently or as a single bound unit, and research from simple
objects points to the possibility of independent representations of
separate properties (Fougnie & Alvarez, 2011; Hanna & Reming-
ton, 1996; Stefurak & Boynton, 1986).

In the present study, we sought to empirically examine the
assumption that different properties of a real-world object are
represented as a single bound unit, as opposed to being represented
as independent features. Furthermore, we sought to do so in a way
that controlled for effects at encoding and retrieval that can falsely
make objects look independent or bound (e.g., attention to only
one property at encoding or being more attentive on some trials
than others). We used the logic that, if a single bound representa-
tion of an object exists, then all of the object’s features will be
remembered or forgotten together. By contrast, if we observe that
different properties are forgotten independently of each other, this
would imply independent storage of the properties. We do not
know the underlying features of object representation, but we can
examine observers’ ability to remember different object properties,
such as an object’s state, color, or exemplar (see Brady, Konkle,
Alvarez, & Oliva, 2008). For example, observers can distinguish
whether a door is open or closed (change of state), whether it is
blue or red (change of color), or whether it is an ornate wooden
door or a plain metal door (change of exemplar). Although these
object properties are not likely to reflect primitive features for the
visual system, they are semantically meaningful properties. We
can thus use them to examine whether memory for different object
properties may be supported in memory by different underlying

features and thus whether different properties may be forgotten
separately.

In Experiment 1, we varied object color and object state prop-
erties and examined whether observers forget one property more
than the other over time. If so, this result would suggest that
objects are not represented as single bound units with an all-or-
none representation of object color and object state. In Experiment
2, we directly examined how memory for one property of an object
(exemplar) was tied to memory for another property of an object
(state) when observers were tested in a surprise memory task. In
both experiments, which vary in paradigm, analysis method, and
conditions of intentional and unintentional memory encoding, we
found evidence for independent forgetting of different object prop-
erties. In Experiment 3, we showed that we can artificially induce
apparently bound object representations by varying the strength of
encoding for different objects, such that observers are likely to
encode both properties of some objects and neither property of
other objects. Together, these results demonstrate that real-world
objects are not represented as a single bound unit in visual memory
and that object representations can falsely appear bound after short
delays because of encoding and retrieval factors.

Experiment 1

In a first experiment, we examined whether an object’s state and
an object’s color are represented in a single bound representation
or are represented as independent properties. To examine this, we
looked at whether observers differentially forget these object prop-
erties over time. We had observers study real-world objects and
then we tested their memory for the color and state of each object
after either a short delay or a long delay. We reasoned that
different rates of forgetting for different object properties would
suggest that the properties were stored independently. For exam-
ple, if the ability to detect both kinds of changes was equal at short
delay but the ability to detect one kind of change decreased more
than the other with increased delay, this would provide evidence
that different object properties are forgotten separately.

Method

Participants. Forty-three naive observers were recruited from
the Massachusetts Institute of Technology (MIT) participant pool
(age range 18-35) and received $5 for their participation. All gave
informed consent. Of the observers, 21 participated in the short-
delay condition and 22 participated in the long-delay condition.

Stimuli. Object images were chosen from a previously pub-
lished set of stimuli (Brady et al., 2008), supplemented with
additional images from a commercially available database (Hem-
era Photo-Objects, Vol. I and II) and Internet searches using
Google Image Search. Overall, 100 categorically distinct objects
were selected, and for each of these objects two state-change
images (differing in pose or configuration of parts) were selected.
These objects were chosen such that they consisted of largely a
single color, and this color was not intrinsic to the meaning of the
object (e.g., the object would be recognizable in any color; see
Figure 1 for example stimuli). In addition, we collected 200 other
categorically distinct objects that differed from those in the main
set but which were also recognizable in any color. These served as
filler stimuli that would not be tested.
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Figure 1. Methods of Experiment 1. (a) In the short-delay condition, observers were shown three objects at a
time and then tested on one of these objects. Either the color or the state of one of the objects was tested with
a two-alternative forced choice, and which property of which object would be tested was not known in advance.
(b) In the long-delay condition, all of the objects were shown, one at a time, and then observers were tested on
one third of these objects. This test could be for either the color or the state of one of these studied objects.
During the study period, observers also had to detect back-to-back repeats to ensure they were attending to the
images. The two-alternative test displays were the same in the short- and long-delay conditions.

To create the final set of stimulus images, we rotated the hue of
each object image to make it a random color. Hue is represented on
a color wheel from 0 to 360 degrees, so the rotation required
choosing a random angle for a given image and then adding that
angle to the hue of each pixel for that image. Finally, for those
images in the main set, we created two sets of images: one in the
randomized color and one in a color 180 degrees in hue space from
that color. Pilot testing showed that a rotation of 180 degrees in
hue space led to an approximately equal degree of difficulty in the
color forced-choice as in the exemplar forced-choice, and using
such a large change in hue space also makes errors more likely to
be due to cases of forgetting the object’s color rather than to
decreased memory precision (Alvarez, Konkle, Brady, Gill, &
Oliva, 2009; Awh, Barton, & Vogel, 2007). This left us with a final
set of 100 categories, each of which consisted of four images (two
state-change images, each present in two different colors) and an
additional set of 200 randomly colored filler objects.

Procedure.

General procedure. Observers were told to remember each
object they saw as well as possible. Before the experiment began

they were given examples of the kind of forced-choice compari-
sons they would see, one example each of a state change and a
color change. All observers sat approximately 60 cm from a 21-in.
monitor. Objects were always shown at 7.5° visual angle. The
experiment took approximately 20 minutes to complete.

Short-delay condition. Observers completed 100 trials each.
Each trial started with a study display consisting of three objects
arranged in a circle around a fixation cross. The objects were
shown for 1.5 s, followed by a fixation cross for 1 s. Observers
were then presented with a two-alternative forced choice. Two
images were presented on the left and right side of the screen (see
Figure 1), and observers were told to indicate which was present
on the study display. Observers pressed Z if they had seen the left
image and M if they had seen the right image. Then, after a brief
(2.5 s) delay, the next trial began automatically.

The three items on the study display always contained two
objects from the filler stimulus set and one object from the main
stimulus set. The item on the subsequent test display was the one
from the main stimulus set, presented in either two colors (color
change condition) or two states (state change condition). The
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location (left/right) of the correct answer was counterbalanced
across observers, as was whether a given object was tested with a
state change or a color change and which particular state and color
image was the studied image and which was the foil image.

Long-delay condition. The long-delay condition consisted of
a study phase and a test phase. In the study phase, observers were
shown 340 objects, one at a time, for 1 s each at the center of the
display. Of these objects, 100 were from the main stimulus set, 200
were filler objects, and 40 were back-to-back repeats of the filler
objects. All items in the study stream were presented in a random
order, and the subset of filler objects (40 of 200) that were repeated
was randomized across observers. During the study phase, observ-
ers were told both to encode each object into memory and to press
the space bar when an object repeated. This repeat-detection task
served to ensure that observers were attending to each of the
images.

In the test phase, observers completed 100 two-alternative
forced-choice memory tests. Each of the 100 objects observers had
seen from the main stimulus set was tested in the same manner as
in the short-delay condition, again counterbalanced such that all
objects were tested equally often in both the state and color
conditions across observers.

Results

Two participants were excluded from the long-delay condition
for failing to perform the back-to-back repeat detection task sat-
isfactorily (4" = 0.9 and 2.5; mean d’ for remaining participants
was 4.2 with standard deviation 0.5). One participant was excluded
from the short-delay condition for failing to complete the task.
Thus, 20 participants from both the short- and long-delay condi-
tions were entered into the final analyses.

Overall performance at the two-alternative forced choice task in
the short-delay condition was 78.8% for color and 76.7% for state.
In the long-delay condition, average performance was 67.8% for
color and 72.5% for state. These results are plotted in Figure 2.
Thus, there was a greater decrement in performance for color than
for state with increasing delay (4% vs. 11%).

(a) Forced-choice performance

08

0.7}

Percent Correct

06}

- State Color

Short delay

State Color
Long delay

To examine the reliability of these effects, we ran a 2 X 2 mixed
analysis of variance with state/color test as the within-subject
factor and short/long delay as the between-subject factor. Partici-
pants had lower performance after a long delay relative to a short
delay, main effect of delay, F(1,38) = 7.74, p = .008, n} = 0.14.
We found no main effect of test type, F(1, 38) = 0.87, p = .35,
M; = 0.02, suggesting that neither state nor color tests were more
difficult on average. However, we found a significant delay X
test-type interaction, F(1, 38) = 5.52, p = .02, ng = 0.13, indi-
cating a greater decrease in memory for color properties than for
state properties as more time elapsed between study and test. In
other words, color information is forgotten more than state infor-
mation with a delay.

Discussion

We presented observers with real-world objects and then tested
their memory for the objects’ colors and state after either a short
delay or a long delay. We found that observers’ ability to detect a
color change decreased markedly over time, whereas their ability
to detect a change in object state remained relatively stable. These
results demonstrate that observers do not forget each object as a
bound unit but instead forget some properties more quickly than
others. These findings suggest independent storage of different
object properties in memory.

By including a short-term memory condition in addition to a
long-term memory condition, we show that observers do not
generally encode one feature preferentially over another (cf. Hanna
& Remington, 1996) and that our test comparisons are equally
difficult for observers in each dimension. Thus, we find that object
color information is being lost from memory more quickly even
though it is just as likely to be initially encoded and equally likely
to be retrieved after a short delay.

An alternative interpretation of these results is that color infor-
mation was never bound to object identity to begin with, even at a
short delay. For example, in the short-delay condition, observers’
may have simply remembered the three colors that were present on
the study display without binding them to the identity of the

(b) Change with delay
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Figure 2. Results of Experiment 1. (a) Percent correct at forced-choice comparisons for state and color in both
the short- and long-delay groups. After only a short delay, the color tests are slightly easier than the state tests.
After a long delay, observers perform considerably worse on the color tests than the state tests. Error bars
represent standard errors. (b) Decrement with delay for state and color. Observers’ performance gets slightly
worse for the state property with a delay but considerably worse for the color property.
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objects. Such a lack of binding even in the short-delay condition
could explain why color was lost more quickly than state infor-
mation. Under this account, the different decay rates for color and
state information occur because color was not bound to the object
in the first place, whereas state information is more integrated with
the object representation and is therefore retained longer. Impor-
tantly, this account is consistent with the main claim suggested
here—namely, that objects are not stored in memory with all their
features integrated into a unitary representation.

Our objects were purposefully chosen such that they did not
have diagnostic colors (i.e., color was not a cue to the identity of
the object). Thus, maintaining the color of each object in memory
was expected to be difficult, as it was an arbitrary property that had
to be bound into the object representation (and color is known to
benefit object recognition when it is diagnostic but not when it is
arbitrary; Naor-Raz, Tarr, & Kersten, 2003; Price & Humphreys,
1989; Tanaka & Bunosky, 1993). In the same way that objects that
meaningfully connect to existing knowledge are easier to remem-
ber than objects that do not (e.g., Konkle, Brady, Alvarez, & Oliva,
2010; Wiseman & Neisser, 1964), meaningful features within an
object may be easier to remember than arbitrary properties of
objects. However, this manipulation does not necessitate our find-
ing that different properties are forgotten at different rates. For
example, we could have found that having to bind an arbitrary
color into the object representation makes the entire bound repre-
sentation more fragile or more likely to fall apart, resulting in a
loss of performance in both the color and state comparisons.
Alternatively, we could have found that it was difficult or impos-
sible to match performance in the short-delay condition for the two
dimensions. For example, observers may have had difficulty en-
coding arbitrary information such as color into memory in the first
place. Instead, we find that the color information is initially en-
coded well but is then selectively forgotten while state information
is preserved. This suggests that the actual underlying memory
representation is not stored as a bound unit, even while controlling
for independence resulting from encoding or retrieval factors.

Experiment 2

In Experiment 1, we used the fact that different properties of an
object are forgotten at different rates to infer that the two proper-
ties are stored independently. In Experiment 2, we sought to
examine more directly whether two object properties are remem-
bered in a single bound representation or stored separately. To do
so, we directly tested whether both properties of an object are
remembered and forgotten together in long-term memory or
whether they tend to be remembered and forgotten independently.
For example, if observers remember seeing a glass of orange juice,
do they systematically remember what kind of glass it was as well
as how much juice was in it? How often do they forget only the
shape of the glass or only the amount of juice? To examine this, we
used two properties that have been shown to be forgotten at
approximately the same rate (object state and object exemplar; see
Brady et al., 2008) and looked at the probability of remembering
one property given an observer remembered the other property
about the same object (the dependence between the two proper-
ties).

In general, interpreting raw dependence scores (e.g., conditional
probabilities) is complicated by a number of confounding factors

and is not a pure measure of how bound two properties are in the
memory representation. For example, observers may be likely to
either remember or forget both properties of an object because
their overall attentiveness or fatigue level changed over the course
of the experiment. Because both properties of the same object
necessarily occur at the same point in time (they are both a part of
the same object), this can make object representations look more
bound than they truly are. In addition, successfully remembering
one property may help in the retrieval of the other even if the
properties are stored independently (e.g., encoding specificity;
Tulving & Thomson, 1973), again introducing overestimates of
boundedness.

On the other hand, the degree of boundedness can also be
underestimated if there are differences in the difficulty of the
exemplar and state comparisons. For example, any random vari-
ability in the degree of precision required for the state and exem-
plar comparisons across objects - causing state errors without
exemplar errors for some objects, and vice versa for others - will
masquerade as independent forgetting of features, underestimating
the degree of boundedness in memory.

To avoid confounds from such encoding, retrieval, and stimulus
factors, the critical manipulation in this experiment is to examine
how memory performance changes over time. This holds con-
founding factors constant and also gives time for observers to
forget some of the objects’ properties. If the object properties are
stored and forgotten independently, over time observers should be
more likely to remember only a single property. In other words, the
dependence between the object properties should decrease over
time. In contrast, if the object properties are stored and forgotten
together, then over time memory for the two object properties
should have the same level of dependence. By taking into account
how dependence changes with delay, we can observe not only how
dependent the properties are on each other initially but also
whether the objects are forgotten in a bound or an independent
manner.

Thus, we tested observers’ long-term memory performance after
a short delay (30 min) and their long-term memory performance
after a long delay (3 days) and examined whether the dependence
between object properties decreased or stayed the same. Any
decrease in dependence between the two object properties over
time could not be caused by either encoding or retrieval factors,
which were identical at the two delays. Thus, change in depen-
dence over time allows us to infer whether two object properties
are stored in a single unitary representation or are stored indepen-
dently.

Method

Participants. Thirty naive observers were recruited from the
MIT participant pool (age range 18-35) and received $5 for their
participation. All participants gave informed consent. Of the ob-
servers, 15 participated in the short-delay condition and 15 partic-
ipated in the long-delay condition.

Stimuli. Object images were chosen from previously pub-
lished sets of stimuli (Brady et al., 2008; Konkle et al., 2010),
supplemented with additional images from a commercially avail-
able database (Hemera Photo-Objects, Vol. I and II) and Internet
searches using Google Image Search. Overall, 120 basic-level
categories of object were selected, and for each of these categories
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we selected two matching state images for each of two category
exemplars. This yielded 120 object categories with 4 images each
(2 exemplars X 2 states; see Figure 3).

Procedure. The experiment consisted of a study phase and a
test phase. In the study phase, observers were shown 120 objects
one at a time for 200 ms each at the center of the display with an
1,800-ms interstimulus interval. During the presentation of the
objects, they judged the physical size of the object (whether it was
larger or smaller than a particular container they were shown,
which was slightly smaller than a shoebox).

Following this task, they were given a surprise long-term mem-
ory task, either immediately following the study period (short
delay) or after a 3-day delay (long delay). In the long-delay
condition, observers were told immediately after the study period
they would need to return in 3 days to perform memory tests. We
used a surprise memory test and a 3-day delay to ensure that
observers’ performance was off ceiling at short delay and de-
creased substantially between the short and long delay, given that
previous work has shown observers are quite good at these com-
parisons even after 5 hours of studying a large number of objects
(Brady et al., 2008). To probe which properties of each object were
encoded, we presented a four-alternative forced choice test display
for each object, consisting of two exemplars (one familiar, one
novel), each in two states (one familiar, one novel). Observers used
the mouse to click on which of the four images they believed they
had seen previously. After choosing an image, they separately
reported how confident they felt (high or low) on both the state
comparison and the exemplar comparison. The next trial then
began automatically. There was no feedback.

Data analysis: Calculating the dependence score. To ad-
dress our main hypothesis, we examined the level of dependence
between observers’ reports of the state and exemplar properties. To
do so, we calculated how much more likely observers were to get
one property correct (e.g., state) if they got the other property
correct than if they got it incorrect, taking into account the con-
tributions of random guessing. In order to convert this into a
dependence measure (% dependent), we first formalized two mod-

(a) Study phase

els: a fully independent model in which the properties are stored
and forgotten independently and a fully bound model in which the
properties are always stored and forgotten together. Then, we
quantified where our observed data fell in between the predictions
of the two models. Finally, for our critical comparison, we exam-
ined how this dependence score for the two properties changed
between the short and long delays.

In the fully independent model (referred to as D = 0 below),
there is never any benefit for memory of the state property given
that exemplar was remembered, because the two properties are
independent. Thus, no matter what the overall percent correct is,
for an independent model of these two properties, the added
memory benefit to one of remembering the other is 0:

P}_o(state| exemplar) = 0

In the fully dependent model (referred to as D = 1 below), if the
exemplar information is remembered, the state information will
always be remembered. If all the objects are remembered, the
increased memory performance for state information given exem-
plar information will go from chance (0.5) to remembered (1.0),
for a maximal added benefit of 0.50. However, if observers do not
remember an object, we assume they guess randomly from among
the four items on the test display, and thus this guessing is
independent for the two properties. As a consequence, even in the
case of a fully bound underlying representation, random guessing
for forgotten items will bring the added benefit down from 0.50.
To account for this random guessing, we computed the guessing-
adjusted fully bound model, based conceptually on that of Gajew-
ski and Brockmole’s (2006) model of boundedness in short-term
memory, as follows.

First we estimate the percent remembered (R) for each property,
based on the overall percent correct:

R(pc) =2pc — 1

This formula treats memory as high threshold and takes into
account that any overall percent correct (pc) was achieved not only

(b) Test phase
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Figure 3. Methods of Experiment 2. (a) Observers were presented with pictures of objects one a time. While
they viewed the objects, their task was to indicate for each object whether it was smaller or larger than a
container they were given. They were not told there would be a memory test for the objects. (b) In the short-delay
condition, after finishing the size judgments for each object, observers were immediately told there would be a
memory test and were tested on the objects they had seen after the study phase. In the long-delay condition, they
were told there would be a memory test, but they came back in 3 days to complete it. Each test trial consisted
of a four-alternative choice, with images of two different exemplars each in two different states. Observers’ task
was to click on which of the four images they had previously seen.
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because items were remembered but also because items were
sometimes forgotten but guessed correctly (Macmillan & Creel-
man, 2005). The “adjusted percent remembered” R estimates how
often observers truly remember a property, after accounting for
fortunate guesses, and is calculated based on overall performance
and chance (here, 50% for each property).

For a given percent correct, the expected p™(state|exemplar)
according to the bound model can then be calculated: Anytime
observers remember the property (R% of the time), they should
have complete dependence, p*(statelexemplar) = 0.5, and any-
time they forget a property (1 — R% of the time), guessing should
cause complete independence, p™ (state|exemplar) = 0. Thus, al-
though in theory a fully bound representation would have a
p ™ (statelexemplar) of 0.5, once we take into account guessing, the
dependence expected in a fully bound model (referred to as D =
1 below) varies as a function of overall percent correct (see
Appendix A for derivation and simulation code):

R(pc)

+
_(state| exemplar) =
Pp=1( plar) R(po) + 1

These expected dependences between properties in a fully inde-
pendent model and in a fully bound model are plotted in Figure 4
as solid black lines.

Based on these models, for each observer we computed how
dependent performance was between the state and exemplar con-
ditions. This number could be a value between O (fully indepen-
dent) and 1 (fully dependent), and it was computed based on the
percentage of the way between the independent and bound model

(a) Forced-choice performance

predictions the observer’s p+(smte | exemplar) was at the observed
percent correct. Because the fully independent model always pre-
dicts p;,_o(state | exemplar) = 0, this reduces to simply

_ p+(sta1e lexemplar)

B Pp—(state | exemplar)

where D is the dependence score of the observer, p+
(state | exemplar) is how much more likely the observer was to
get the state correct if he or she got the exemplar correct, and
pp_,(state| exemplar) is the bound model prediction at the observ-
er’s percent correct.

Results

Two participants were excluded from the long-delay condition
for failing to perform the size judgment cover task satisfactorily.
Thus, 15 participants from the short-delay condition and 13 par-
ticipants from the long-delay condition were entered into the final
analysis.

Overall performance at the task was estimated separately for
exemplar and state comparisons (e.g., whether observers indicated
the correct exemplar independent of what state they chose and
whether they indicated the correct state, independent of what
exemplar they chose). In the short-delay condition, performance
was 78.7% for exemplar and 72.3% for state. In the long-delay
condition, average performance was 66.6% for exemplar and
63.0% for state.

(b) Dependence over time

0.5
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Figure 4. Results of Experiment 2 for the state condition. (a) Given some level of performance in memory for
the state of the object (x-axis), the y-axis shows how much more likely you are to remember the state if you
remember the exemplar of the object than if you do not. If the two properties are completely bound in memory,
the expected conditional probability is represented by the solid black line. If the two properties are remembered
completely independently, the expected conditional probability would be O at every point on the x-axis. In the
short-delay condition, the performance on state tests given the exemplar memory indicated some dependence,
shown in the dashed red line. If memory for object state and exemplar information maintain this dependence
relationship over a delay, performance in the long-delay condition would fall somewhere on this red dashed line.
However, in the long-delay condition, there was a significantly lower dependence, plotted with the curve shown
in dashed blue. Note that this figure shows the model fit to the group data for illustrative purposes; for purposes
of analysis, the model was fit to each single participant’s memory performance, and statistics were performed
over the parameter estimates. (b) Observers in the short-delay condition have more dependence between the two
properties than do observers in the long-delay condition, even after adjusting for the change in percent correct.
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To address our main hypothesis, we examined the level of
dependence between the two properties. After a short delay, we
found that observers showed 46.6% dependence of state on exem-
plar (standard error of the mean [SEM] = 9.7%) and 27.4%
dependence of exemplar on state (SEM = 4.9%), both significantly
different from zero, #(14) = 3.8, p = .0003, Cohen’s d = 1.2, and
1(14) = 5.6, p = .00006, d = 1.45, respectively. The asymmetry
between statelexemplar and exemplarlstate is a result of the
slightly different overall performance in the two conditions. After
a 3-day delay, we found that observers showed 13.4% dependence
of state on exemplar (SEM = 14.1%) and 7.6% dependence of
exemplar on state (SEM = 8.7%), neither significantly different
than zero, #(12) = 0.97, p = .36, d = 0.27, and #(12) = 0.87,p =
40, d = 0.24, respectively. In addition, these values of dependence
were lower than those observed in the short-delay condition: state
given exemplar, #(26) = 1.99, p = .057, d = 0.75; exemplar given
state, #(26) = 2.06, p = .05, d = 0.78. These results show that the
features were remembered more independently over time. Impor-
tantly, by comparing dependence rather than raw conditional prob-
abilities, we remove the main effect of observers’ decreased per-
formance at a longer delay and adjust for the fact that guessing is
necessarily independent.

Confidence. In addition to choosing which of the four stimuli
they believed they had seen, observers gave us confidence judg-
ments separately for the state and exemplar properties of the
object. Thus, after observers chose their answer, we highlighted
two of the objects (the one they chose and the change-of-state
object) and they indicated how sure they were that the correct
answer was the one they chose and not the other object (low or
high confidence); then we did the same for the change-of-exemplar
object. Overall, observers’ confidence was well calibrated: Accu-
racy was higher when confidence was high (M = 84%, SEM =
*2.6% in the short-delay condition and M = 74% *2.4% in the
long-delay condition) than when confidence was low (61% *=1.7%
and 58% =*1.3 in the short- and long-delay conditions, respec-
tively).

Thus, we could also examine the degree of independence in
memory representations by examining observers’ self-reported
memory strength rather than their percent correct. In particular, if
observers said they had high confidence in one comparison (e.g.,
state), how likely were they to also have high confidence in the
other (e.g., exemplar)? This metric is informative because it helps
confirm that changes in guessing are not the source of the in-
creased independence after a delay.

Participants’ confidence decreased overall at long delay com-
pared to short delay (chance of reporting high confidence: short
delay, M = 64.9%, SEM = 4.6%; long delay, M = 46%, SEM =
4.2%). Importantly, this decrease appeared to be independent for
state and exemplar properties. In particular, an observer’s chance
of reporting high confidence on one feature if he or she reported
high confidence on the other feature was 82% (SEM = 3.1%) after
a short delay and 62% (SEM = 3.9%) after a long delay. This
decrease in dependence from short delay to long delay was sig-
nificant, #(26) = 4.04, p < .001, d = 1.53. However, an observer’s
chance of reporting high confidence if he or she reported low
confidence in the other feature did not differ across delay (short
delay: M = 38.9%, SEM = 6.1%, long delay: M = 31.9%, SEM =
3.4%), difference not significant, #(26) = 0.95, p = .35, d = 0.36.
To compare how much more likely participants were to report high

confidence on one feature given they did so on the other, we
computed an odds ratio. In the short-delay condition, the odds ratio
was 10.9 (=1.1), reflecting observers’ having 10 times the odds of
reporting high confidence in one property if they had high confi-
dence in the other; in the long-delay condition this odds ratio was
only 4.1 (+1.1), a significant difference (p < .01). This indicates
that observers’ likelihood of having high confidence for both
features decreased with delay, even after discounting the general
tendency for observers to have lower confidence after a delay.

Thus, these data show that observers’ confidence also grows
more independent with time, as does their percent correct. As
delay time increases, high confidence on one feature is less likely
to co-occur with high confidence on the other feature.

How independent are these features? The results indicate
that state and exemplar information features are forgotten at least
partially independently and that the underlying representation of
these features is not fully bound. Can we quantify how indepen-
dent the underlying memory representations for state and exemplar
information must be from these data?

In the short-delay condition, we find a 46% dependence of state
on exemplar. At one extreme, this could mean that memory rep-
resentations for state and exemplar information are 46% over-
lapped; however, some percent of this dependence could also be
attributed to “encoding correlation” (e.g., how likely observers are
to encode or retrieve both properties of a given object due to other
factors, such as attention, even though the underlying memory
representations are actually independent). Thus, there is a spec-
trum of possibilities for the true feature independence, shown in
Figure 5 (red line), with 46% boundedness and 0% encoding
correlation at one extreme and 0% boundedness and 46% encoding
correlation at the other (see formal model specification in Appen-
dix B).

In the long-delay conditions, we find a 14% dependence of state
on exemplar memory. The same logic also allows us to break down
the 14% boundedness observed into components that reflect both

~— Short-delay

0.46 == Long-delay

Boundedness

0.70

Encoding correlation

Figure 5. Best fit models that vary in both the memory boundedness and
the correlation between state and exemplar encoding. Both the short-delay
(red line) and long-delay (blue line) conditions can be fit by assuming a
correlation at encoding, a bounded memory representation, or any mixture
of the two. However, the combined data can be fit only by assuming that
nearly all of the forgetting is independent (e.g., that the dependence results
from correlations at encoding, indicated by the black X).
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the true overlap in the features and the correlations due to encoding
conditions, after taking into account the forgetting observed after
the short delay. The full spectrum is shown in Figure 5 (blue line).

Critically, we can find the combination of feature boundedness
and encoding correlations that simultaneously fit both the short
and long delay conditions. The combined fit is shown in Figure 5
(black X). The only model that fits both delay conditions requires
nearly 100% independent forgetting of the features.

The best fit parameters for explaining both the short delay and
long-delay data suggest 97% independence between state and
exemplar properties with r = .63 correlation of the likelihood of
initially encoding the two properties about the same object. In fact,
when simulating what we would expect from complete indepen-
dent forgetting (100% all of the initial dependence coming from
encoding), we find that our dependence measure should go from
46% to 14% when percent correct drops from 72% to 63%. This
almost exactly matches the data we observe in Experiment 2. Thus,
the current experiment provides strong evidence that the forgetting
is almost totally independent, even though there is an initial
dependence in how likely observers are to remember both the state
and exemplar properties after a short delay.

Discussion

In Experiment 2, observers were required to remember both the
state and exemplar of an object, and we examined whether ob-
servers remember both properties together or whether they forget
the two properties separately. To examine this, we calculated the
conditional probability of remembering one property given suc-
cessful memory for the other, taking into account the independence
of guessing. Interpreting a given level of dependence between the
properties is difficult because this dependence can be influenced
by a number of encoding and retrieval factors rather than simply
the boundedness of the representation. Thus, we examined the
change in this dependence over time, reasoning that any increase
in independence of the two object properties with increased delay
could not be caused by either encoding or retrieval factors, which
were identical at the two delays, and must be caused by indepen-
dent forgetting of the properties over time.

We found that at short delays, there was significant dependence
between the two properties—observers were more likely than
chance to remember both the state and exemplar of a particular
object (46% bound). However, at a long delay this dependence is
markedly decreased (14% bound). This suggests that much of the
initial dependence observed at short delays is due to encoding or
retrieval factors, such as the fact that all the features of a given
object are presented at the same time and spatial location. How-
ever, ultimately the two properties of an object are forgotten
separately. A straightforward model of how much of the depen-
dence was caused by correlations at encoding versus boundedness
in the memory representation indicated that almost all of the
dependence was due to correlations at encoding, as forgetting
appeared to be completely independent. This suggests that the
initial dependence we observe between the two properties may be
solely due to encoding and retrieval factors like differential atten-
tion on different trials. Thus, our data suggest almost totally
independent storage of different object properties in memory.

The model of memory used in the calculation of dependence is
a high-threshold model. We believe this is reasonable, even if it is

not entirely uncontroversial (e.g., Parks & Yonelinas, 2007;
Wixted, 2007). In particular, we are asking people to recollect
specific details of the objects, and our forced-choice comparisons
require observers to choose between objects that are quite different
from each other. Such large differences between the correct item
and foil item seem to result in all-or-nothing memory retrieval in
other features, like color (Brady, Konkle, Gill, Oliva, & Alvarez,
2012). However, our conclusions do not depend on the high-
threshold nature of the model. In particular, forced-choice tasks in
general are less sensitive to the distinction between signal detec-
tion and high-threshold models because with little bias, there is
little dependence on the particular shape of the response operating
characteristic curve that distinguishes these models (Macmillan &
Creelman, 2005). Furthermore, in Appendix C we show that even
if the underlying memory signal is better characterized by signal
detection, our high-threshold model nevertheless does a reasonable
job of characterizing the dependence between the properties. There
seems to be no crucial difference between a high-threshold and
signal detection model in examining the dependence between
properties, which inherently depend not on the model of successful
versus unsuccessful memory performance (the distinction between
signal detection and high-threshold models) but on the dependence
between performance with one stimulus and another.

Experiment 3

The data from Experiment 2 strongly suggest that the forgetting
of separate features is independent and that the initial dependence
we observe between properties at short delays is driven by encod-
ing factors that lead observers to encode both properties about
some objects and neither property about others. We hypothesized
that this correlation in initial encoding probability could result
from attentional differences over the course of the experiment.
Thus, observers may be likely to either encode or fail to encode
both properties of an object because their overall attentiveness or
fatigue level changes over the course of the experiment. Because
both properties of the same object necessarily occur at the same
point in time and space, this could make object representations
appear more bound than they truly are, particularly at short delays.
In Experiment 3, we sought to test this directly by artificially
increasing the likelihood of such encoding disparities. That is, we
varied the display time of the objects, where some objects were
presented for a longer duration than other objects. We expected the
degree of dependence to be the same for short-presentation and
long-presentation items analyzed separately but that combining the
data across presentation durations would make object representa-
tions appear more dependent. Such a pattern would highlight the
fact that variability in the quality with which different objects are
encoded will artificially inflate the observed dependence between
features—a limitation we addressed in Experiments 1 and 2 by
measuring forgetting over time.

Method

Participants. Eleven naive observers were recruited from the
Harvard University participant pool (age range 18-35) and re-
ceived $5 for their participation. All participants gave informed
consent. None of the participants had taken part in Experiment 2.

Procedure. The experiment was identical to the short-delay
condition of Experiment 2, with one exception: For each observer,
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a random half of the objects were displayed for a short duration
(150 ms) and a random half of the objects were displayed for a
long duration (500 ms). All other methods were identical to Ex-
periment 2.

Results

As in Experiment 2, overall performance at the task was quite
good, with performance at 85.2% correct for exemplar and 76.1%
correct for state. The dependence scores computed separately for
the short-presentation and long-presentation conditions were not
significantly different, statelexemplar, 34% versus 45%, #(10) =
0.62, p = .55, d = 0.19; exemplar|state, 29% versus 31%, #(10) =
0.14, p = .88, d = 0.05, and on average were comparable to the
short-delay condition of Experiment 2. However, when all the
items were analyzed together, we found a 77.4% dependence of
state on exemplar (SEM = 8.5%) and a 43.6% dependence of
exemplar on state (SEM = 5.6%). These dependence levels were
greater than the dependence scores observed in the short-encoding
duration and long-encoding duration computed separately,
statelexemplar, #(10) = 4.3, p = .002, d = 1.29; exemplar|state,
1(10) = 1.7, p = .11, d = 0.51, as well as those observed in
Experiment 2 (46.6% and 27%, respectively): statelexemplar,
1(24) = 2.3, p = .03, d = 0.90; exemplarlstate, #(24) = 2.2, p =
.04, d = 0.86. These results suggest that increasing the disparity in
how well particular objects are encoded can artificially increase
the estimated dependence between properties.

Discussion

In Experiment 3, we manipulated whether observers had more
or less time to study an object, in order to simulate the effects of
stronger or weaker encoding that might naturally happen when
studying a stream of items presented for equal durations. Criti-
cally, we found that feature representations were equally depen-
dent whether items were presented for a short or long duration but
that combining these trials together leads to an increased depen-
dence estimate.

These data suggest that factors such as differential attention on
different trials can cause dependence between properties. This
highlights the fact that the observed dependence between two
properties can be driven not only by the true underlying depen-
dence but also by encoding and retrieval factors like differential
attention on different trials. These results help put the results of
Experiment 2 into context. In Experiment 2 we observed 46%
dependence at the short delay but only 14% dependence at the long
delay. We assume that the true underlying dependence of these two
features does not change over time; thus, these two properties are
at most 14% bound, with simulations putting this number closer to
0% bound. The results of Experiment 3 show how the 46%
boundedness observed in short delay could be so high due
solely to the contributions of encoding and retrieval factors.
Together with those of Experiments 1 and 2, these results
suggest almost totally independent storage of different object
features in memory.

General Discussion

Across three experiments, we investigated whether different
properties of real-world objects are represented with a single

unitary object representation or whether they are represented in-
dependently. In Experiment 1, we showed observers arbitrarily
colored real-world objects in different states and tested their mem-
ory for these properties immediately or after a delay. We found
that, over time, arbitrary color information about the object was
forgotten much more rapidly than the more meaningful state
information. For example, people remembered they saw an upright
lawn chair (as opposed to a reclined lawn chair) but not whether it
was yellow or blue. This suggests that objects are not forgotten as
bound units but instead that some object properties are forgotten
more quickly than others.

In Experiment 2, we showed observers a set of categorically
distinct objects that varied in two dimensions (object exemplar and
state). We then probed observers’ memory for state and exemplar
information after either a short delay or long delay. After a short
delay, observers frequently remember both properties about an
object, but after a long delay memory for these properties was
more independent. For example, after a short delay people were
likely to remember that the cookie they saw was a chocolate chip
cookie with a bite out of it; however, after more time, they were
prone to confuse the cookie with an oatmeal-raisin cookie (exem-
plar information forgotten) but still remember that the cookie they
saw had a bite out of it (state information remembered) or vice
versa. This suggests that different object properties are forgotten
independently over time, even within the same object. In fact, the
forgetting we observed over time in Experiment 2 appeared to be
almost entirely independent for the two properties.

In Experiment 3, we asked whether the initial dependence we
observe between the properties at short delays derives from en-
coding and retrieval factors like attentional differences over the
course of the experiment. We increased the heterogeneity of the
initial encoding of the objects by showing some for shorter dura-
tions and some for longer durations. We found that increasing
encoding disparity among objects leads to an inflated estimate of
dependence.

Together, these data indicate that observers do not store a single
unitary object representation in memory: Instead, some object
properties persist while other properties are forgotten, and observ-
ers tend to forget different properties independently of each other
for individual objects. Furthermore, although there is often a
dependence between how likely observers are to remember differ-
ent properties of the same object, we show that this is likely to be
due to encoding factors rather than to reflect a bound underlying
memory representation.

Below we discuss how independent storage of different object
properties can have important repercussions for theories that ad-
vocate binding both in visual working memory and in long-term
memory, as well as for models of object recognition, all of which
tend to assume unitary object representations.

Object Representations Are Not Unitary

The existing literature on object binding in perception and visual
working memory has tended to focus on perceptual binding, in
particular, the binding of different low-level features such as
orientation and color into coherent, bound objects. For example,
feature integration theory proposes that we recognize low-level
visual features such as color and orientation in parallel across the
visual field, but binding these features together into coherent



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

BINDING IN VISUAL MEMORY 801

objects requires attention (Treisman, 1998). Given the role of
attention in this perceptual binding, it may not be surprising that
much of the literature on visual working memory finds that fea-
tures seem to be bound into objects in memory (e.g., Luck &
Vogel, 1997), because (a) attention tends to be directed to all of the
features of a particular object once that object is attended
(O’Craven, Downing, & Kanwisher, 1999; Scholl, 2001) and (b)
those objects we attend are likely to be the ones we remember
(e.g., Chun, 2011; Rensink, O’Regan, & Clark, 1997). Thus,
attention may be one encoding factor that often makes object
representations appear bound, particularly in perception or after a
short delay: If a particular object is attended, all of its features are
attended, and those features will all be remembered well; by
contrast, all the features of an unattended object will not be well
remembered.' This role of attention during encoding could make
even representations that are inherently independent and separable
appear to be bound, as we found in Experiment 3. In addition to
attention, other encoding and retrieval factors, such as the fact that
successfully remembering one property may help in the retrieval of
the other even if they are stored independently (e.g., encoding
specificity; Tulving & Thomson, 1973), are all likely to impact the
degree to which two independent properties of an object look
bound.

Thus, we believe that existing evidence suggesting bound rep-
resentations in visual working memory (e.g., Gajewski & Brock-
mole, 2006) may reflect, at least in part, shared encoding factors
rather than truly unitary memory representations. In support of this
idea, recent evidence suggests that observers may often remember
one feature of an object but not another, even in simple stimuli like
colored oriented lines (e.g., Bays, Wu, & Husain, 2011; Fougnie &
Alvarez, 2011; Stefurak & Boynton, 1986). Further, remembering
multiple features of the same object can come at a significant cost
relative to remembering only a single feature (Fougnie et al.,
2010).

In addition, it is possible to observe independence between
features like color and orientation even in long-term memory. For
example, observers can remember which shapes they saw without
any impairment from a change in the color of the object between
study and test (Hanna & Remington, 1996), suggesting indepen-
dent representations of these features. However, because they used
simple low-level features and told observers in advance what the
memory tests would be like, Hanna and Remington may have
caused observers to attend to only a single property of the visual
objects during the study phase (e.g., using feature-based attention:
Maunsell & Treue, 2006). Thus, their results could reflect encod-
ing strategies rather than independence in the underlying memory
representations. Similarly, encoding the features independently
could play a role in the independence observed in much of the
existing work in visual working memory (e.g., Stefurak & Boyn-
ton, 1986). In the present experiments, we ensured that both
properties were equally relevant to the observer and still found
independent forgetting of these properties.

By examining binding with real-world objects we were able to
examine memory not only in the short term but also at longer
intervals. This is challenging to do when using meaningless or
simplified stimuli, as in previous approaches. In addition, by not
telling people in advance about the memory test (in Experiments 2
and 3) and using properties that are not low level and thus cannot
be attended too separately, we can avoid the potential for observers

to selectively encode one property over another. Thus, we believe
that the method used in the current experiments—not only exam-
ining dependence between features at a single delay interval but
also examining how it changes over time—may be critical to
understanding whether seemingly bound representations are just a
consequence of encoding and retrieval factors rather than a reflec-
tion of the true underlying structure of memory. By examining a
change in dependence between properties over time, this approach
allows us to examine the structure of memory representations
while holding constant any dependence between properties in-
duced by encoding and retrieval factors.

Binding and Perceptual Integrality

In the present experiments, we use object properties that are
relatively high level: object state, object exemplar, and object
color. This allows us to examine whether our memory represen-
tations for different properties are unitary, rather than whether our
perception of two properties is unitary, as in the classic distinction
between integral and separable dimensions (Garner, 1974). For
example, using simple stimuli it can be shown that hue and shape
are “separable” dimensions, such that, for example, hue does not
necessarily impact the perception of shape (Garner, 1974; Mad-
dox, 1992). By contrast, hue and brightness are “integral” dimen-
sions, such that across a wide range of tasks, hue is seen to
automatically impact judgments of brightness and vice versa (Gar-
ner & Felfoldy, 1970; Maddox, 1992). In the present experiments,
rather than examining dimensions that are perceptually integral we
examine properties that can be perceived separately and must be
bound in memory. We can thus ask whether we form bound
memory representation out of perceptually distinct features. This is
a different approach than that taken in the existing literature on
holistic representations of real-world objects; for example, some
evidence suggests that faces are represented holistically as integral
units rather than as bound but ultimately independent features of
eyes, noses, and mouths (e.g., Tanaka & Farah, 1993; although see
Reinitz, Morrissey, & Demb, 1994, for evidence that holistic face
encoding is may depend on attention at encoding).

Binding Objects to Contexts

Much of the literature examining binding with real-world ob-
jects has focused on binding objects to context. For example, in
visual cognition it has been found that scene context can function
as a retrieval cue for object details (Hollingworth, 2006); that
memory for the spatial position of objects in scenes is better when
the scene is presented during testing (Hollingworth, 2007; Mandler
& Johnson, 1976); and that memory for object details and memory
for the scene viewpoint are stored independently, rather than as a
bound unit in memory (Varakin & Loschky, 2010). More broadly,
long-term memory for individual items and objects is generally
found to be independent of memory for the associations between
items and the associations between items and contexts (e.g.,
Ceraso, Kourtzi, & Ray, 1998; Johnson & Raye, 2000; Marshuetz,
2005; Mather, 2007). In fact, many models of memory suppose

"For an analogous idea that encoding factors such as attention may
cause the same items to be remembered in both implicit and explicit
memory, see Turk-Browne, Yi, and Chun (2006).
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that the hippocampus and prefrontal cortex are critically involved
only in the “binding” aspects of memory important for remember-
ing associations between various elements of an event and are not
involved in memory for individual objects (Davachi & Wagner,
2002; Mitchell, Johnson, Raye, & D’Esposito, 2000; Ranganath,
Cohen, Dam, & D’Esposito, 2004). These theories treat memory
for objects as holistic and memory for events as requiring binding
between disparate elements to form a true episodic memory.

In the current work, we find that even memory for individual
objects—often used as “items” in such memory studies—is not
holistic and instead that separate visual and semantic properties of
objects are forgotten separately. This implies that the recognition
of a real-world object is not a holistic process and that association
and binding between separate visual and semantic properties are
required for an object to be entirely remembered. Depending on
the stimuli used, many experiments that claim to be isolating a
binding mechanism by contrasting memory for objects with mem-
ory for the context in which such objects were seen may be failing
to do so, as even their nonbinding condition may depend critically
on binding processes within objects (see Davachi, 2006, for a
discussion of within- vs. between-object binding and the role of
hippocampus). Although there are likely differences between
within-object binding and across-object binding (e.g., emotion
seems to differentially impact these processes; Mather, 2007), the
role of binding for features within real-world objects is critical to
the interpretation of such memory studies.

Object Representations and Object Recognition

As both visual long-term memory and object recognition are
thought to depend on the same high-level object representations
(Palmeri & Tarr, 2008), memory errors such as those in the current
data may be able to usefully inform models of object recognition
by elucidating the underlying object representation. In particular,
one of the object properties we use in the current experiments is
object state, which we define as a change in the pose or configu-
ration of an object’s parts (see Brady et al., 2008). This aspect of
object representation has rarely been addressed in the existing
literature on visual memory, and it is likely to be an important
component of object recognition: Many everyday objects contain
movable units that affect the semantics or functional uses of an
object while keeping visual information similar and not resulting
in a change in identity of an object. Studying memory for changes
in the configuration or pose of an object’s parts is interesting
because part-based representation is an important point of debate
in the literature on object recognition and view-based versus more
structured representations of objects (e.g., Palmeri & Tarr, 2008).

Although our findings do not directly address whether separate
parts within an object are forgotten separately, the independence of
state changes from color or exemplar changes lends some credence
to structural models of object representation, where configurations
of parts are explicitly represented independently of each other and
could therefore be separately forgotten in memory (Hummel,
2000). Such independence fails to support view-based theories,
which tend to assume holistic object representations (although see
Ullman, 2007), and theories in which visual recognition is thought
to proceed by increasingly complex conjunctions forming new
features until an entire object is represented, which also tend to

assume holistic object representations (DiCarlo & Cox, 2007;
Serre, Wolfe, Bileschi, Riesenhuber, & Poggio, 2007).

Conclusion

So what is the format of real-world object representations? We
find independent forgetting of information about an object’s color,
information that distinguishes different exemplars of the same
category, and information that distinguishes changes in object
state. This suggests that the underlying visual features that we rely
on to distinguish these different changes are distinct and are
forgotten separately. These results demonstrate that real-world
objects are not represented as a single bound unit in visual mem-
ory. Furthermore, although there is often a dependence between
how likely observers are to remember different properties of the
same object, this appears to be due to encoding factors rather than
to reflect a bound underlying memory representation.
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Appendix A

Binding Model Derivation

Here we derive specific predictions for the dependence between
state and exemplar accuracy given a fully bound model, depen-
dence(D) = 1, correcting for the fact that guessing is independent
between features by definition.

If memory representations are bound, the probability of getting
the state correct given you get the exemplar correct will be depend
on whether you remember the item or not. In general:

p(state N exemplar)

state | exemplar) =
P plar) p(exemplar)

1
R(pc) + ZG(pc)
Pp_ (statel exemplar) = —————

1
R(pc) + EG(pC)

On the other hand, observers should get the state comparison
correct when they fail to get exemplar comparison correct only if
they guess it correctly, because the bounded model posits the two
memories are never recalled independently:

p(state N ~exemplar)

state | ~exemplar) =
P plar) p(~exemplar)

1
£Gwo)

Pp_,(state| ~exemplar) =

5Gwe)

Correspondingly, p™(statelexemplar), the amount more likely
observers are to get state correct if they get exemplar correct than
if they get exemplar incorrect, is the subtraction of these two
terms:

1 1
R(pc) + =G(pc) —G(pc)
N 4 4
DPp-(statelexemplar) = -

1
R(pc) + EG(pc)

1

-G
76O
Which reduces to simply

R(pc)

+
_(statelexemplar) =
Pp=i( plar) R(po) + 1

The following is Matlab code to simulate the bound model using
Monte Carlo methods:
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nSubjects = 15;
nItems = 120;

percentCorrList = 0.5:0.01:1.0;

for percI = l:length(percentCorrList
percentCorr = percentCorrList (percI);
% Do 500 simulations at each percent correct

for m=1:500

What percentage of items should we remember?
mean = 2*percentCorr - 1;

W o

% Generate simulated data with that number of items remembered
R = rand(nSubjects, nItems)<=R_mean;

enerate independent guesses for state and exemplar
rand (nSubjects, nItems)<=0.50;
rand (nSubjects, nItems)<=0.50;

% We get a comparison correct if we remember it or guess correctly

publishers.

yrighted by the American Psychological Association or one of its allied

This document is cop
This article is intended solely for the

user and is not to be dissen

k=]
5}

=
S

=
5}
(72}
=
=
5}
o

stateCorrect = R | G_S;

% Plot function

> exempCorrect R | G_E;
2
o % Save condition probability (increased likelihood of getting
5 % state given you also get exemplar):
) condProb (m, percI) = mean(stateCorrect (exempCorrect==1))...
L - mean (stateCorrect (exempCorrect==0)) ;
< end
end

plot (percentCorrList, mean (condProb));

Appendix B

How Independent Is Forgetting?

To quantify the degree of independence between the under-
lying memory representations for state and exemplar informa-
tion, we asked what percentage of the forgetting between our
short- and long-delay conditions appears to be independent
forgetting rather than correlated, bound forgetting. In particular,
we model memory (a) representations that are truly independent
and are thus forgotten independently but are correlated at initial
encoding and (b) representations that are bound and are thus
always forgotten together. We then estimate what proportion

% PARAMETERS:

percentCorrectAtShortDelay

lossInPercentCorrectWithDelay

initialCorrelation

= 0.65;
amountTrulyBound = 0.03;

of bound versus independent representations is needed to
best explain the data from both the short- and long-delay condi-
tions.

Critically, we find the combination of feature boundedness and
encoding correlations that simultaneously fit both the short- and
long-delay conditions requires nearly 100% independent forgetting
of the features (almost no truly bound representations). Pseudo-
code (in the style of Matlab code) for this simulation is presented
below:

0.72;

0.09;

(Appendices continue)
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% SHORT DELAY:

o

o°

Sample initially correlated, yet ultimately independent state
% and exemplar memories (of size [nSubs, nItems])

[Smem, Emem] = CreateCorrelatedUniforms(initialCorrelation,
[nSubs,nlItems]);

S_mean = 2*percentCorrectAtShortDelay-1;
S = Smem <= S_mean;

E_mean = 2*percentCorrectAtShortDelay-1;
E = Emem <= E_mean;

% Simulate bound memories

Rmem = rand (nSubs,nlItems);

R_mean = 2*percentCorrectAtShortDelay-1;
R = Rmem <= R mean;

3:
. 9
% 5 % Compute independent guesses for state and exemplar
< © G_S = rand(nSubs,nItems)<=0.50;
f “j G_E = rand(nSubs,nItems)<=0.50;
&g
o = % Mix trials from bound and independent memories in appropriate ratio:
é ; useBoundForTrial = rand(nSubs,nItems) <= amountTrulyBound;
= 2
., ©
é 1) % And calculate overall percent correct for state & exemplar:
'g ’g stateCorrect = (~useBoundForTrial & S) | (useBoundForTrial & R) | G_S;
o = exempCorrect = (~useBoundForTrial & E) | (useBoundForTrial & R) | G_E;
ISR}
5]
5 ) % Now calculate conditional probability for short delay:
) condProb_ ShortDelay = mean(stateCorrect (exempCorrect==1))
= 8 - mean (stateCorrect (exempCorrect==0)) ;
2 3
<3 % LONG DELAY:
—_ = & mmmmm
< O
SIS
o 2 % Now forget some memories -- forget independent memories
£ independently:
fj) =] numItemsToForget = round(nlItems* (lossInPercentCorrectWithDelay));
&= for j=l:size(S,1)
S o available = Shuffle(find(S(j,:)==1));
'_ 4 S(j,available (l:numItemsToForget)) = 0;
5= end
£ =
< 2
o ; for j=l:size(E,1)
- : available = Shuffle (find(E(j,:)==1));
E’ = E(j,available (l:numItemsToForget)) = 0;
B é end
= >
g % and forget bound memories in a bound fashion:
S 2 for j=l:size(R,1)
g— - available = Shuffle (find(R(j,:)==1));
» % R(j,available (l:numItemsToForget)) = 0;
—-
= g end
g .8
5 .2 % Now calculate percent correct/condProb again:
2 o G_S = rand(subs,items)<=0.50;
'S -3 G E = rand(subs,items)<=0.50;
= <
= é stateCorrect = (~useBoundForTrial & S) | (useBoundForTrial & R) | G_S;
= exempCorrect = (~useBoundForTrial & E) | (useBoundForTrial & R) | G_E;

% Now calculate conditional probability for long delay:

condProb_LongDelay = mean(stateCorrect (exempCorrect==1))
- mean (stateCorrect (exempCorrect==0)) ;

Using this model we can compute predictions for each com-
bination of boundedness and encoding correlation, given the
percent correct we observe for short and long delay. We can
then compare the condition probability predicted by those mod-

els to that we actually observe and compute an error term (root
mean square error). These raw errors are plotted in Figure B1;
the minimum error values are plotted in Figure 5 in the main
text.

(Appendices continue)
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(a) Short-delay
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(b) Long-delay
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Boundedness
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(c) Combinedfit
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log(RMSE)
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Figure Bl. Best fit models that vary in both the memory boundedness and the correlation between state and
exemplar encoding. (a, b) Both the short-delay and long-delay conditions can be fit by assuming a correlation
at encoding, a bounded memory representation, or any mixture of the two. (c) However, the combined data can
be fit only by assuming that nearly all of the forgetting is independent (i.e., that the dependence results almost
entirely from correlations at encoding). This is because observers’ dependence decreases much more rapidly than
would be expected by a model with bound memory representations. The best fit parameters for explaining both
the short-delay and long-delay data suggest 97% independence between state and exemplar properties with a
correlation of » = .63 in the initial encoding of state and exemplar properties. RMSE = root-mean-square error.

Appendix C

Comparison of High-Threshold and Signal Detection Models

Our model of how bound a memory representation appears is
based on a high-threshold memory model. In particular, we assume
that observers successfully remember some proportion of the items
and have no information about others. Such high-threshold models
provide reasonable fits to recollection data (Parks & Yonelinas,
2007; Yonelinas, 2002) and thus should be sufficient to distinguish
between our bound and independent hypotheses, even if ultimately
signal detection may be a better model of recollection processes
(e.g., Wixted, 2007). In addition, forced-choice tasks in general are
less sensitive to the distinction between signal detection and
threshold models because, when there is little response bias, there
is little dependence on the particular shape of the response oper-
ating characteristic curve that distinguishes these models (Mac-
millan & Creelman, 2005). Although these points mitigate con-
cerns over using a high-threshold model, it is also possible to
examine our data using signal detection.

In particular, we can model a bound hypothesis as reflecting a
single underlying memory signal. Specifically, the correct item’s
memory strength would be reflected by a normal distribution
centered at d’, with the three distractors each centered around 0.
This framing of our task is in line with a signal detection model of
the Deese—Roediger—-McDermott task (e.g., Macmillan & Creel-
man, 2005; Wixted & Stretch, 2000). The independence hypoth-
esis, by contrast, would be modeled as reflecting two underlying
memory signals: a state familiarity signal and an exemplar famil-

iarity signal. Thus, the underlying memory signal must be consid-
ered in a two-dimensional space, where the correct item’s memory
signal is reflected by a normal distribution centered at (state d’,
exemplar d') and the distractors are centered at (state d’, 0),
(exemplar d’, 0), and (0,0).

To model performance in our task, we must convert these
underlying memory strengths into a model of our particular four-
alternative forced-choice comparison. In the case of a straightfor-
ward two-alternative forced-choice task with unrelated targets and
foils, d' = V2 X z(pc), where z is the inverse cumulative normal
distribution function (Macmillan & Creelman, 2005). This is be-
cause the distance between two orthogonal normal distributions,
each centered at d’, is V2 X d'. To generalize to our higher
dimensional stimuli and four-alternative task, we can simulate the
process that leads to this formula by using Monte Carlo methods.
In particular, in the two-alternative forced-choice case, we can
sample a large number of memory strengths from a normal distri-
bution centered at d' and from one centered at 0 and, for each pair,
ask how likely the greater memory strength is to be from the
correct item, rather than the foil. To generalize to the four-
alternative forced-choice case, we can simply sample from the
memory strengths of each of the four items and once again ask
how likely the item with the highest memory strength is to be
correct on state and/or exemplar to determine a percent correct.

(Appendices continue)
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Figure C1. (a). Results if the independence model relies upon summed familiarity choice rule. (b) Results if
independence model relies upon likelihood ratio choice rule. In each plot, the different lines correspond to
different underlying pc/d’ in the simulated data. The dashed black line corresponds to equality, x = y; pc =

percent correct.

For the independent model, a decision must be made about how
observers pool information from the two memory signals to choose
a single answer. There are at least two possibilities: (a) they choose
the item with the largest summed familiarity signal; (b) they
choose the item whose combined memory signal is most likely to
have come from an “old” item (e.g., according to the likelihood
ratio; Irwin & Hautus, 1997). In the current model, this means the
item most likely to have been generated by a normal distribution
centered at (state d’, exemplar d").

Finally, we can take these modeled four-alternative forced
choices and ask, if we fit our high-threshold model to these data,
how bounded does the result look? In particular, we can mix
samples from the bound model and the independent model to-
gether in a certain ratio, simulating partially bound memory rep-
resentations, and ask whether our high-threshold model can accu-

rately recover the percent bounded that is simulated according to
the signal detection model. We find that it can (see Figure CI).
Although the recovered boundedness scores do systematically
deviate from the modeled boundedness, they do so in a well-
behaved, linear fashion that differs little based on the underlying
percent correct/d” of the model. Thus, even if signal detection is a
better model of the underlying memory traces and decision pro-
cess, our conclusions remain unaffected: The dependence of state
and exemplar decreases systematically over time and does so at a
rate much greater than we would expect by the decrease in percent
correct or, correspondingly, d'.

Received September 28, 2011
Revision received July 10, 2012
Accepted July 10, 2012 =



	Real-World Objects Are Not Represented as Bound Units: Independent Forgetting of Different Objec ...
	Experiment 1
	Method
	Participants
	Stimuli
	Procedure
	General procedure
	Short-delay condition
	Long-delay condition


	Results
	Discussion

	Experiment 2
	Method
	Participants
	Stimuli
	Procedure
	Data analysis: Calculating the dependence score

	Results
	Confidence
	How independent are these features?

	Discussion

	Experiment 3
	Method
	Participants
	Procedure

	Results
	Discussion

	General Discussion
	Object Representations Are Not Unitary
	Binding and Perceptual Integrality
	Binding Objects to Contexts
	Object Representations and Object Recognition
	Conclusion

	References
	Appendix ABinding Model Derivation
	Appendix BHow Independent Is Forgetting?
	Appendix CComparison of High-Threshold and Signal Detection Models


