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Abstract An observer’s eye movements are often informative about how the ob-
server interacts with and processes a visual stimulus. Here, we are specifically in-
terested in what eye movements reveal about how the content of information visu-
alizations is processed. Conversely, by pooling over many observers’ worth of eye
movements, what can we learn about the general effectiveness of different visual-
izations and the underlying design principles employed? The contribution of this
manuscript is to consider these questions at a large data scale, with thousands of
eye fixations on hundreds of diverse information visualizations. We survey existing
methods and metrics for collective eye movement analysis, and consider what each
can tell us about the overall effectiveness of different information visualizations and
designs at this large data scale.

1 Introduction

Eye movements can provide us with clues about the elements of a visual display that
people pay attention to, what they spend most time on, and how they redirect their
attention between elements. The eyes can also be used as indicators of higher-level
cognitive processing like memory, comprehension, and problem solving [22, 24, 33,
40, 41, 55].
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Eye movement analyses have been used to study the perception of natural scenes,
simple artificial stimuli, webpages, user interfaces, and increasingly, information vi-
sualizations. In human-computer interaction (HCI), eye tracking has often been used
for evaluating the usability of systems and studying the related question of interface
design [14, 20, 30, 48]. Duchowski provides a survey of different eye tracking ap-
plications in domains ranging from industrial engineering to marketing [14].

In the visualization community, eye tracking analyses have been used to indepen-
dently evaluate different visualizations (e.g., graphs [26, 27, 28, 40, 50], node-link
diagrams [1], tree diagrams [9], parallel coordinates [63]) and to directly compare
visualization types [7, 12, 18]. Eye-tracking has also been used to understand how
a person visually perceives, explores, searches, and remembers a visualization, pro-
viding a window into the cognitive processes involved when interacting with visu-
alizations [1, 3, 7, 12, 27, 38, 50, 51, 54].

Information visualizations are specifically designed to be parsed and understood
by human observers. Visualizations can be created to help convey a specific message
to a general audience, or to help data analysts extract trends and meaning from
the data. As visualizations are amenable to specific tasks, observer performance
on those tasks can be directly measured (e.g., ability to find a specific piece of
information, to solve an analysis task, to remember the content for later retrieval,
etc.). Eye movement analyses can then be used to provide possible explanations of
task performance (e.g., why a task was completed quicker with one visualization
design as compared to another), as complementary performance measurements that
take into account human perception. Eye movements can provide a window into
the cognitive processing taking place when an observer examines an information
visualization.

Although different eye movement metrics have been previously reviewed within
the context of different tasks [1, 18, 30, 52], in this manuscript we focus specifically
on eye fixation metrics that can be used for collective analysis (the aggregation of
data across a population of observers and visualizations) of information visualiza-
tion designs. We provide a review of metrics that can be used for the quantitative
comparison of different visualization designs in a large data setting. Unlike many
previous studies, our analyses are broad, spanning a large diversity of visualization
types and sources. We discuss and visualize ways in which different metrics can be
used to evaluate the effectiveness of different visualization designs, and we use the
MASSVIS dataset [7] to provide some specific examples. The review provided in
this manuscript is intended to motivate further research into large-scale eye move-
ment analysis for the broad comparison and evaluation of visualization designs.
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2 Methods

2.1 Visualization data

We used the MASSVIS dataset of 393 labeled target visualizations1, spanning four
different source categories: government and world organizations, news media, in-
fographics, and scientific publications [7]. These visualizations were manually la-
beled using the LabelMe system [60] and Borkin et al.’s visualization taxonomy [8]
(Fig. 1a). Labels classify visualization elements as: data encoding, data-related
components (e.g., axes, annotations, legends), textual elements (e.g., title, axis la-
bels, paragraphs), pictograms or human recognizable objects, or graphical elements
with no data encoding function. Labels can overlap in that a single region can have a
number of labels (e.g., an annotation on a graph has an annotation label and a graph
label). Labels are available for analyses as segmented polygons.

2.2 Eyetracking experiments

We used eye movements collected during the encoding experimental phase from
the study by Borkin et al. [7]. During this phase, each visualization was shown to
participants for 10 seconds, producing an average of 37.4 (SD: 3.2) eye fixations
per visualization, or an average 623 (SD: 93) total fixations per visualization. This
duration proved to be of sufficient length for a participant to read the visualization’s
title, axes, annotations, etc., as well as explore the data encoding, and short enough
to avoid too much redundancy in fixation patterns and explorative strategies. Partic-
ipants were told to remember as many details of each visualization as possible for
subsequent experimental phases. During the recognition and recall phases, respec-
tively, participants completed a memory task and were asked to write descriptions
of the visualizations they remembered. We do not directly use this additional data
in the present manuscript, but refer to the conclusions made from the eye movement
analyses in the context of memory performances.

Eye movements of 33 participants were recorded on 393 target visualizations,
with an average of 16.7 viewers (SD: 1.98) per visualization. Equipment included
an SR Research EyeLink1000 desktop eye-tracker [64] with a chin-rest mount 22
inches from a 19 inch CRT monitor (1280 x 1024 pixels). For each eye fixation,
available for analysis are its spatial location in pixel coordinates, duration in mil-
liseconds, and ordering within the entire viewing episode (scanpath).

1 Dataset available at http://massvis.mit.edu
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2.3 Metrics and visualizations

Depending on the analysis being performed, different aspects of eye movement be-
havior can be measured including fixation locations, fixation durations, and sac-
cades2. Fixations are discrete samples of where an eye was looking on a visual
display obtained from continuous eye movement data3 (Fig. 1b). By segmenting the
visual stimulus into elements or Areas of Interest, denoted AOI, fixations falling
on different AOIs can be separately analyzed (Fig. 1a). Consecutive fixations on a
specific region or AOI can be further clustered into gazes (Fig. 1c).

Apart from summarizing the number and duration of fixations on a visual design
or its constituent elements, the spatial and sequential aspects of a viewing episode
can be used to compute additional measurements of eye movement behavior for
visual design analysis. For instance, the spatial distribution of fixations can be cap-
tured by the moments of the distribution or the coverage (proportion of visual design
fixated at a particular threshold value, Sec. 3.3). The temporal ordering (sequence)
of fixations is often referred to as the scanpath [46] and is common for analyz-
ing search tasks (Fig. 1d). For instance, one can consider the sequence of AOIs
observers fixate while searching for a target or a specific piece of information.

Quantitative eye movement measurements used by previous visualization stud-
ies are summarized in Table 1. A review of the most common eye measurements
across usability studies more generally is provided by Jacob and Karn [30]. The 5
most common metrics reported across 24 usability studies also appear in Table 1.
Different metrics emphasize different aspects of eye movement behavior, which are
in turn linked to different underlying cognitive processes. The number or density of
fixations allocated to a visual area has been linked to its importance [30, 53]; fix-
ation duration in a visual area has been linked to the area’s information content or
complexity [33]; and the transitions between fixations have been found to be related
to the search behavior and expectations of the viewer [16, 45, 55]. Patterns in the
fixation data of a group of observers can also be used to highlight design features
or diagnose potential problems. For instance, the order of fixations has been found
to be indicative of the efficiency of the arrangement of visual elements [16]. A vi-
sualization designer might be interested in ensuring that the important elements are
more likely to be fixated early.

The use of different types of visualizations for highlighting properties of eye
movement data have also been useful for complementing and facilitating analysis
over groups of observers [1, 19, 42, 58, 65, 67, 69, 70]. A number of previous
visualization studies relied mostly on such qualitative analyses (Table 1). Blascheck
et al. provide a review of visualizations and visual analytics tools for eye movement
data [3]. While visualizations can facilitate data exploration, inferences made from
eye movement data are more meaningful when supported by quantitative metrics.

2 Saccades are intervals between fixations: the motion of the eyes from one fixation point to the
next. The analysis of saccades is beyond the scope of the present manuscript, for which additional
metrics would be necessary [41, 52].
3 The eye has to be recorded as “still” according to prespecified parameters [25, 61]. We use the
standard thresholds set by the EyeLink Eyetracker [64].
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Fig. 1 We plot the fixations of a single observer for demonstration purposes, to visually depict
a few key terms used throughout this manuscript. (a) The images we use are labeled with AOIs
(Areas of Interest), which are elements like the title, axes, and legend. (b) Fixations are the dis-
crete locations that an observer’s eyes have landed on at some point during the viewing episode.
(c) Multiple consecutive fixations that land on the same AOIs of an image can be further clustered
into gazes. The size of the gaze marker is proportional to the number of fixations making up the
gaze, with the marker centered at the mean of those fixation locations. (d) A scanpath is the se-
quence of fixations made. Here, to denote the temporal ordering, fixations are connected by lines,
numerically labeled, and colored such that the earliest are in red and the latest in yellow.

For the explorative analysis of the MASSVIS eye movement data, we utilize
fixation heatmaps due to their versatility, scalability, and interpretability. Fixation
heatmaps are constructed by aggregating a set of fixations and placing a Gaussian4

at each fixation location. The result is a continuous distribution that can be plotted
on top of the image to highlight elements receiving the most attention. This simple
visualization is particularly amenable to collective analysis, allowing us to visualize
the fixations of any number of observers on a single image. To highlight different
trends in the eye movements, we aggregate over different subsets of the data: distinct
fixation durations (Fig. 2), time points during the viewing episode (Fig. 3), and
observers (Fig. 5). Our coverage plots are also just thresholded fixation heatmaps
(Fig. 4).

4 Typically, the sigma of the Gaussian is chosen to be equal to 1 or 2 degrees of visual angle, to
model the uncertainty in viewing location.
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We note that eye movement analyses are most informative in the context of an
objective task that an observer performs. In such cases, eye movements are more
likely to be related to task completion itself. Furthermore, eye movement analyses
can be used to complement, and provide possible explanations for, other objective
performance measurements (e.g., speed or accuracy of task completion). Consid-
ered in isolation, eye movement measurements can be open to interpretation, and
thus they should complement, not replace, other measurements. For example, the
eye movements from the MASSVIS dataset were collected in the context of mem-
ory and recall tasks. Participants’ fixations were recorded as they examined visu-
alizations, knowing they would have to retrieve the details from memory later. In
this manuscript, our focus is on the eye movement metrics themselves and how they
can be used for the evaluation and comparison of information visualizations more
broadly. We use the MASSVIS dataset for demonstrative examples.

Table 1 Eye movement metrics commonly reported in usability studies [30] and for evaluation
and comparison of information visualizations. Different perception studies have used these metrics
to make conclusions about the importance and noticeability of different visual elements, and to
reason about the difficulty of the perception task and the complexity of the visual design [52]. AOI
refers to an Area of Interest, which can be a component of a graph like the title, axis, or legend.

Quantitative measurements Visualization
studies

Possible interpretations

Summary measurements
Total number of fixations* [18, 40] Efficiency of searching or engagement

[13, 20, 33]
Total number of gazes [12] Complexity of inferential process [12]
Mean fixation duration* Complexity or engagement [33]

AOI measurements
Fixations on AOIs* (propor-
tion or number)

[9, 38, 63] Element importance or noticeability [53]

Gazes on AOIs* (proportion
or number)

[12] Element importance or noticeability [30]

Viewing time on AOIs* (pro-
portion or total)

[12, 38, 63] Information content, complexity, or en-
gagement [33]

Time to first fixation on an
AOI

[18, 40, 63] Attention-getting properties [11]

Mostly qualitative analysis [26, 27, 28, 50,
54]

Relative complexity or efficiency of dif-
ferent designs

* The marked metrics are the 5 most commonly-reported across a total of 24 usability
studies surveyed by Jacob and Karn [30].

3 Analyses

In this section we demonstrate how the metrics listed in Table 1 can be used for col-
lective eye movement analysis over a large dataset of visualizations and observers.
We use the MASSVIS dataset for our examples. Summary fixation measurements
(Sec. 3.1) can be used for a very coarse analysis of the fixation data to compare
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groups of visualizations, for instance by source type. Having areas of interest labeled
on individual visualizations allows us to perform a finer-grained analysis (Sec. 3.2)
to investigate which elements capture observer attention the earliest, the most num-
ber of times, and for the longest interval of time. The advantage of a fixed set of
labels is that statistics can be aggregated over many different visualizations to dis-
cover general trends. Aside from using the common metrics from Table 1, we also
show the utility of coverage (Sec. 3.3) and inter-observer consistency (Sec. 3.4)
analyses to derive additional diagnostics about visualization designs.

3.1 Summary fixation measurements

To summarize fixation behavior across images and observers for a given task, eye
tracking studies often consider the average number and duration of fixations re-
quired for task completion. The advantage of these coarse measurements are that
they are easy to compute, independent of image content, and can be aggregated over
any number of data points. These measurements are particularly meaningful when
there is an objective task for an observer to complete, such as searching for a partic-
ular piece of information in a visualization. Studies can investigate whether fewer
fixations are required to solve a task using one visualization design compared to an-
other. These measurements can also be used to make inferences about observer en-
gagement, with the caveat that there may be confounding factors such as the amount
of information on a visualization, and relying on these metrics alone may not be suf-
ficient. All the results reported below correspond to numerical values computed on
393 MASSVIS visualizations, and reported in Table 2 in the Appendix.

Total number of fixations: Aggregating over target visualizations from different
source categories, the news media visualizations contained the most fixations on
average, significantly more than the other visualization sources.

Total number of gazes: By aggregating fixations into gazes, we can avoid dou-
ble counting fixations with different pixel coordinates on the image, but still falling
within the same set of AOIs. For instance, for an observer reading a piece of text,
all consecutive fixations falling on the text are considered part of a single gaze. An-
alyzing gazes, we find that the same patterns hold as with fixation counts, with the
news media visualizations containing the largest number of gazes on average. This
shows that the eyes moved around most between elements on the news media vi-
sualizations than on any of the other visualization sources. Is there more to look at
on the news media visualizations? The number of visualization elements is actually
highest for the infographics. We can use these metrics to hypothesize that observers
were more engaged by the news media visualizations, but additional user studies
would be needed for validation.

Mean fixation duration: The duration of individual fixations has significance
in the psychology literature. For instance, shorter-duration fixations, less than about
200-250 ms, are sometimes considered involuntary (the eyes move there without
a conscious decision) [21]. Fixations longer than about 300 ms are thought to be
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encoded in memory. Across the MASSVIS target visualizations, the mean fixation
duration is longer for infographics and scientific visualizations. These visualizations
contain many diagrams and other visually-engaging elements, and have been found
to be the most memorable [7].

By plotting heatmaps of fixations at various durations in Fig. 2, we can see which
elements of a visualization are explored for shorter or longer periods of time, and
thus potentially differentially processed. Durations of fixations have been found to
be related to the complexity and difficulty of the visual content and task being per-
formed [16, 49, 55]. Thus, considering locations in a visualization receiving fixa-
tions of increased duration could be used to discover elements of the visualization
that are engaging the cognitive resources of the observer.

Fig. 2 Heatmaps created by selectively aggregating fixations of different durations, across all ob-
servers. Here we see that longer-duration fixations (300-500 ms) are used to explore more of the
data elements. Fixation durations have been linked to the complexity and informativeness of a
visual area [16, 49, 55].

3.2 AOI fixation measurements

Having labeled (pre-segmented) visualization elements allows statistics to be ag-
gregated over observers and visualizations, to relate eye movements back to these
elements, and get a finer-grained picture of observer attention. In the eye tracking
literature, segmented image regions for quantifying eye movement behavior are of-
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ten called Areas of Interest (AOIs) or Regions of Interest (ROIs). Note that in some
cases, as in ours, the AOIs are meaningful parts of the visual content and are pre-
segmented for analysis. In other cases AOIs may be defined by clustering the eye
movements during post-processing5. All of the results reported below correspond to
the plots included in Fig. 6-7 of the Appendix.

Fixations on AOIs: Fixation statistics across AOIs can be aggregated over all
visualizations to make conclusions about general design principles. For example,
over all 393 target visualizations of the MASSVIS dataset, the legend, table header
row (i.e., top label row of a table), paragraph, and title elements receive on average
the largest number of fixations. However, when aggregating over multiple instances
in a visualization of each element type, we find that observers make more fixations
on the paragraph and label element types, although any individual label in a visual-
ization would receive fewer fixations than the legend.

Gazes on AOIs: Within a single gaze, paragraphs receive the most fixations.
But by aggregating fixations into gazes, the header row and legend receive the most
gazes. Observers return to header rows and legends most frequently, which is why
they end up with the most fixations overall. These specific elements allow the infor-
mation in a visualization to be clarified and integrated.

Viewing time on AOIs: The viewing time (in ms) can be a measure of the im-
portance or information content of a visualization element [33]. We find that of the
total number of time spent fixating visualizations, legends, header rows, paragraphs,
and titles were fixated the longest. This corresponds to the fact that these elements
received the most fixations overall, another measure of importance.

Time to first fixation on an AOI: An analysis of scanpaths can indicate which
elements are fixated first and which elements are fixated multiple times during the
entire viewing episode. Over all observers and visualizations, we can find the aver-
age fixation number on which each element was first fixated. Across the MASSVIS
target visualizations, the elements fixated earliest are titles, objects, paragraphs, and
header rows. These are textual elements from which an observer can expect to learn
the most about what the visualization is conveying (important elements) and visual
depictions that attract attention (noticeable elements). A complementary visualiza-
tion can depict these trends. We selectively aggregated over fixations at different
time points in the viewing episode, splitting the viewing time into 3 segments of 3
seconds each, and computed fixation heatmaps. As depicted in Fig. 3, titles consis-
tently receive attention in the first 3 seconds of viewing time. Then fixations move
to the paragraphs, other explanatory text, and data elements.

Overall, observers tend not to dwell on pictograms and purely-visual elements,
and instead spend most of the time reading text. This supports previous findings that
viewers start by visiting, and spend more time on, textual elements than pictorial el-
ements [56]. This does not mean that observers do not look at pictograms. However,
fixations on these elements do not last long: observers look at these elements, and
move on. Considering a number of different fixation metrics concurrently paints a
clearer picture of observer eye movement behavior.

5 Goldberg and Helfman [18] discuss implementation choices and issues arising when working
with AOIs and fixations.
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Fig. 3 Viewing behavior unfolding over time is visualized by aggregating fixations during specific
intervals of time. Titles are consistently fixated earliest, followed by explanatory paragraphs. The
data itself is explored after much of the text.

Of all the textual elements, titles are often first to be examined, and in general,
receive a lot of attention during the viewing episode. Our eye movement analyses
point to the importance of these elements, while additional quantitative analyses re-
ported in Borkin et al. confirm that titles are highly memorable elements that are
often recalled by participants, and can aid or hinder comprehension of a visualiza-
tion [7]. In such a way, eye movement measurements can complement additional
task-specific analyses.
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3.3 Coverage

Coverage, related to spatial density metrics [13, 20], is computed by aggregating
the fixations of all observers, thresholding the resulting fixation heatmap at some
fixed value, and measuring the amount of image area covered by fixations [69].
Coverage can be visualized (as in Fig. 4) by masking out image regions with fixa-
tion values below the threshold. Image regions that survive high thresholds are those
that receive the most fixations. Applying the same threshold to different information
visualizations can facilitate comparison across designs. A lower coverage value in-
dicates that observers tend to look at a smaller portion of the visualization.

Analyzing coverage can help diagnose potential design issues. If a large part of
the visualization is covered in data but fixation coverage is low, observers may have
missed important components of the visualization or crucial parts of the message
(Fig. 4). Across the MASSVIS target visualizations, infographic visualizations have
on average more coverage than any of the other visualization sources. Although
these differences are not statistically significant, a trend surfaces across 3 different
threshold values. Another way to look at this trend is that among the 50 visualiza-
tions with highest coverage (at a 20% threshold), 38% are infographics, while of the
50 visualizations with lowest coverage, 38% are news media. Does this contradict
the coverage finding? Both infographics and news media visualizations receive a
high number of fixations, indicating high observer engagement, but the news media
visualizations in the MASSVIS dataset tend to be simpler and have fewer elements.
As a result, fixations on the news media visualizations are more clustered around a
few components, leading to lower coverage. By considering multiple fixation met-
rics, a fuller story unfolds.

3.4 Inter-Observer Consistency

Inter-observer consistency (IOC) is used in saliency research6 to quantify the sim-
ilarity of observer fixations on an image. IOC for an image is a measure of how
well the fixation heatmap of N-1 observers predicts the fixation heatmap of the re-
maining observer, averaging over all N observers, under some similarity metric7.
We propose that IOC analysis can be used to determine how the design of an in-
formation visualization guides observers. High IOC implies that observers tend to
have similar fixation patterns, while a low IOC corresponds to different observers
examining a visualization in different ways. In the latter case, it is worth measuring
if the different possible fixation patterns will lead observers to derive similar conclu-
sions from the visualization. Will the message of the visualization be clear no matter

6 This has also been called inter-subject consistency [68], the inter-observer (IO) model [4], and
inter-observer congruency (IOC) [43].
7 Area under receiver operating characteristic curve (AUROC or AUC) is the most commonly used
similarity metric [15]. Note that IOC analysis can be extended to the ordering, instead of just the
distribution, of fixations [19, 32, 43, 46].



12 Bylinskii, Borkin, Kim, Pfister, Oliva

Fig. 4 Analyzing fixation coverage can help diagnose potential design issues. (a) The photographic
element may have distracted observers, who paid no attention to the bar graph; (b) The title at the
bottom, explaining the visualization, was missed; (c) Less crucial quotes captured more attention
than explanatory text; (d) A visualization with many components and high coverage - observers
were engaged, and examined the majority of the visualization. Different thresholds for plotting
coverage can be used to visualize regions of an image fixated by different proportions of observers.
We plot the thresholds at 5% and 20% of the maximum heatmap value.

how the visualization is examined? Did the designer of the visualization intend the
visualization to be viewed in a particular way? Fig. 5 contains example fixation
heatmaps for a visualization with high IOC and one with low IOC. In general, dense
and crowded visualizations with a lot of information have low IOC; there is a lot
to look at, and different observers choose to look at different things. Simple, well-
structured visualizations (e.g., with a standard layout) direct observer attention, so
different observers look at these visualizations in similar ways. For example, across
the MASSVIS target visualizations, infographic visualizations have lower IOC than
any of the other source categories, and news media visualizations have the highest
IOC. This goes along with the coverage storage: with fewer elements to look at in a
visualization, observers are more consistent about where they look.
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Fig. 5 Top row: A visualization with high IOC. All observers have a similar fixation pattern on this
visualization. This visualization tends to consistently guide the observer’s attention. Bottom row:
a visualization with low inter-observer consistency (IOC). Different observers examine the visual-
ization in different ways but will they get the same information out of it? For ease of comparing
the fixation patterns of different observers, the underlying visualizations have been gray-scaled.

4 Conclusion

In this manuscript we reviewed a number of existing eye movement metrics and
considered their utility for the collective analysis of large, diverse datasets of visu-
alizations. By aggregating statistics over observers and visualizations, these metrics
can be used to quantitatively evaluate different types and designs of visualizations.
We also discussed techniques for visualizing properties of fixation behavior that
these metrics aim to capture8. Whereas we focused mostly on the distribution of
eye fixations, a more thorough investigation of other properties of eye movement
behavior like scanpaths and saccades are likely to provide additional insights. This
manuscript contributed a discussion of broader, more large-scale comparison meth-
ods than prior visualization studies.

The need will only increase for metrics and analyses that can scale to processing
data of potentially hundreds of observers on thousands of images. New method-
ologies are opening up opportunities of collecting user attention patterns, to ap-
proximate or replace costly eye tracker recordings, at larger scales than previously
possible [31, 37, 59].

8 Labeled visualizations, eye movement data, and code for the visualizations in this manuscript are
available at http://massvis.mit.edu.
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Moreover, some of the design evaluations discussed might be possible without
collecting any user data at all. Many computational models have been developed
over the past couple of decades to predict eye movements, specifically fixations
and attention patterns on natural images9. In recent years, computational predic-
tions have begun to come very close to ground truth human eye movements on
photographs [10]. Models for predicting eye movements on graphic designs, web-
pages, and visual interfaces are also beginning to show promise [47, 62]. As com-
putational models continue to evolve, opportunities will open up to evaluate visual
designs, including information visualizations, in a fully automatic manner. For in-
stance, O’Donovan et al. computationally predict the importance of different visual
elements in graphic designs [47], Berg et al. predict the importance of elements and
objects in natural images [2], and Khosla et al. predict the memorability of differ-
ent image regions, automatically generating a kind of importance map per image
[36]. Le Meur et al. directly predict inter-observer congruency (IOC) for images
without user data [44]. Automatic predictions of image interestingness [23], style
[34], aesthetics [57], and memorability [29, 35] are already possible. Such compu-
tational predictions have the potential of making their way into designer tools, to
provide real-time feedback on visual designs and visualizations. Importantly, these
computational predictions are all informed by studies and measurements of human
perception and cognition. The results of eye movement analyses thus have the po-
tential to make simultaneous contributions to the understanding of human cognitive
and perceptual processes, visual content design principles, and better automatic de-
sign predictions in the future.
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Appendix

Table 2 Eye fixations on a total of 393 MASSVIS visualizations are analyzed and discussed in
Sec. 3.1. Measurements are first aggregated across all observers per visualization, to obtain an
average value for each visualization. Then statistics are computed over all the visualizations per
source category for a comparison across the categories: infographic, news media, scientific, and
government. The t-statistic is reported for each pairwise t-test in the final column (Bonferonni-
corrected for multiple comparisons). Colored markers indicate which pairwise comparison each
t-statistic corresponds to. Tests with p < 0.05 are marked with (*) and those corresponding to
p < 0.01 are marked with (**). Note, for clarity, not every pairwise comparison is reported. The
highest value for each measurement is highlighted in gray.

Summary Infographics News Science Government Pairwise
measurements (92 vis) (122 vis) (79 vis) (100 vis) comparisons
Number M = 38.7 •• M = 19.7 • M = 18.4 •• M = 11.9 • • t(212)=5.73**
of elements (SD = 32.9) (SD = 14.0) (SD = 10.8) (SD = 7.4) • t(177)=4.79**

• t(169)=5.23**
Total number M = 37.3 •• M = 39.0 •• M = 34.6 •• M = 37.7 •• • t(212)=4.39**
of fixations (SD = 3.1) (SD = 2.6) (SD = 3.1) (SD = 2.5) • t(177)=7.56**

• t(169)=5.77**
• t(220)=3.80**

Total number M = 33.7 • M = 33.9 •• M = 32.3 • M = 31.9 •• • t(199)=3.20*
of gazes (SD = 3.7) (SD = 3.5) (SD = 3.7) (SD = 3.3) • t(190)=3.65*

• t(220)=4.56**
Mean fixation M = 238.6•• M = 218.6 • M = 245.3 • M = 221.3•• • t(212)=6.82**
duration (SD = 26.5) (SD = 16.1) (SD = 26.9) (SD = 15.9) • t(177)=7.44**

• t(190)=5.55**
Coverage M = 0.59 M = 0.55 M = 0.57 M = 0.57
(5%) (SD = 0.15) (SD = 0.12) (SD = 0.14) (SD = 0.12)
Coverage M = 0.43 M = 0.39 M = 0.41 M = 0.42
(10%) (SD = 0.15) (SD = 0.12) (SD = 0.13) (SD = 0.12)
Coverage M = 0.26 M = 0.23 M = 0.23 M = 0.25
(20%) (SD = 0.12) (SD = 0.09) (SD = 0.09) (SD = 0.09)
IOC M = 0.81 M = 0.83 M = 0.82 M = 0.82
(20%) (SD = 0.05) (SD = 0.03) (SD = 0.04) (SD = 0.03)

Fig. 6 These plots correspond to the results reported in Sec. 3.2. Note that Bonferonni-corrected
pairwise t-tests with p < 0.05 are marked with (*), p < 0.01 with (**), and p < 0.001 with (***).
For clarity, not all pairwise comparisons are plotted.
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Fig. 7 These plots correspond to the results reported in Sec. 3.2. Note that Bonferonni-corrected
pairwise t-tests with p < 0.05 are marked with (*), p < 0.01 with (**), and p < 0.001 with (***).
For clarity, not all pairwise comparisons are plotted.


