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Human observers are able to rapidly and accurately categorize nat-
ural scenes, but the representation mediating this feat is still
unknown. Here we propose a framework of rapid scene categoriza-
tion that does not segment a scene into objects and instead uses a
vocabulary of global, ecological properties that describe spatial and
functional aspects of scene space (such as navigability or mean
depth). In Experiment 1, we obtained ground truth rankings on glo-
bal properties for use in Experiments 2-4. To what extent do
human observers use global property information when rapidly
categorizing natural scenes? In Experiment 2, we found that global
property resemblance was a strong predictor of both false alarm
rates and reaction times in a rapid scene categorization experi-
ment. To what extent is global property information alone a suffi-
cient predictor of rapid natural scene categorization? In
Experiment 3, we found that the performance of a classifier repre-
senting only these properties is indistinguishable from human per-
formance in a rapid scene categorization task in terms of both
accuracy and false alarms. To what extent is this high predictability
unique to a global property representation? In Experiment 4, we
compared two models that represent scene object information to
human categorization performance and found that these models
had lower fidelity at representing the patterns of performance than
the global property model. These results provide support for the
hypothesis that rapid categorization of natural scenes may not be
mediated primarily though objects and parts, but also through glo-
bal properties of structure and affordance.
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1. Introduction

One of the greatest mysteries of vision is the remarkable ability of the human brain to understand
novel scenes, places and events rapidly and effortlessly (Biederman, 1972; Potter, 1975; Thorpe, Fize,
& Marlot, 1996). Given the ease with which we do this, a central issue in visual cognition is determin-
ing the nature of the representation that allows this rapid recognition to take place. Here, we provide
the first behavioral evidence that rapid recognition of real-world natural scenes can be predicted from
a collection of holistic descriptors of scene structure and function (such as its degree of openness or its
potential for navigation), and suggests the possibility that the initial scene representation can be based
on such global properties, and not necessarily the objects it contains.

1.1. Rapid basic-level scene categorization

Human observers are able to understand the meaning of a novel image if given only a single fixa-
tion (Potter, 1975). During the course of this glance, we perceive and infer a rich collection of informa-
tion, from surface qualities such as color and texture (Oliva & Schyns, 2000; Rousselet, Joubert, &
Fabre-Thorpe, 2005); objects (Biederman, Mezzanotte, & Rabinowitz, 1982; Fei-Fei, lyer, Koch, & Pero-
na, 2007; Friedman, 1979; Rensink, 2000; Wolfe, 1998), and spatial layout (Biederman, Rabinowitz,
Glass, & Stacy, 1974; Oliva & Torralba, 2001; Sanocki, 2003; Schyns & Oliva, 1994), to functional
and conceptual properties of scene space and volume (e.g. wayfinding, Greene & Oliva, 2006; Kaplan,
1992; emotional valence, Maljkovic & Martini, 2005).

Indeed, from a short conceptual scene description such as “birthday party”, observers are able to
detect the presence of an image matching that description when it is embedded in a rapid serial visual
presentation (RSVP) stream and viewed for ~100 ms (Potter, 1975; Potter, Staub, & O’ Connor, 2004).
This short description is also known as the basic-level category for a visual scene (Rosch, 1978; Tver-
sky & Hemenway, 1983), and refers to the most common label used to describe a place.

The seminal categorization work of Eleanor Rosch and colleagues has shown that human observers
prefer to use the basic-level to describe objects, and exhibit shorter reaction times to name objects at
the basic-level rather than at subordinant or superordinant (Rosch, 1978). It is hypothesized that the
basic-level of categorization is privileged because it maximizes both within-category similarity and
between-category variance (Gosselin & Schyns, 2001; Rosch, 1978). In the domain of visual scenes,
members of the same basic-level category tend to have similar spatial structures and afford similar
motor actions (Tversky & Hemenway, 1983). For instance, most typical environments categorized as
“forests” will represent enclosed places where the observer is surrounded by trees and other foliage.
An image of the same place from very close-up might be called “bark” or “moss”, and from very far
away might be called “mountain” or “countryside”. Furthermore, the characteristic spatial layout of
a scene constrains the actions that can be taken in the space (Gibson, 1979; Tversky & Hemenway,
1983). A “forest” affords a limited amount of walking, while a “countryside” might afford more options
for navigation because the space is open. Although such functional and structural properties are inher-
ent to scene meaning, their role in scene recognition has not yet been addressed.

1.2. The object-centered approach to high-level visual recognition

Many influential models of high-level visual recognition are object-centered, treating objects and
parts as the atoms of scene analysis (Biederman, 1987; Biederman, Blickle, Teitelbaum, Klatsky, &
Mezzanotte, 1988; Biilthoff, Edelman, & Tarr, 1995; Fergus, Perona, & Zisserman, 2003; Marr, 1982;
Pylyshyn, 1999; Riesenhuber & Poggio, 1999; Ullman, 1999). In this view, the meaning of a real-world
scene emerges from the identities of a set of objects contained within it, learned through the experi-
ence of object co-occurrence and spatial arrangement (Biederman, 1981, 1987; De Graef, Christaens &
d’Ydewalle, 1990; Friedman, 1979). Alternatively, the identification of one or more prominent objects
may be sufficient to activate a schema of the scene, and thus facilitate recognition (Biederman, 1981;
Friedman, 1979).
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Although the object-centered approach has been the keystone of formal and computational ap-
proaches to scene understanding for the past 30 years, research in visual cognition has posed chal-
lenges to this view, particularly when it comes to explaining the early stages of visual processing
and our ability to recognize novel scenes in a single glance. Under impoverished viewing condi-
tions such as low spatial resolution (Oliva & Schyns, 1997, 2000; Schyns & Oliva, 1994; Torralba,
Fergus, & Freeman, in press); or when only sparse contours are kept, (Biederman, 1981; Biederman
et al., 1982; De Graef, Christaens, & d’Ydewalle, 1990; Friedman, 1979; Hollingworth & Henderson,
1998; Palmer, 1975) human observers are still able to recognize a scene’s basic-level category.
With these stimuli, object identity information is so degraded that it cannot be recovered locally.
These results suggest that scene identity information may be obtained before a more detailed
analysis of the objects is complete. Furthermore, research using change blindness paradigms dem-
onstrates that observers are relatively insensitive to detecting changes to local objects and regions
in a scene under conditions where the meaning of the scene remains constant (Henderson & Hol-
lingworth, 2003; Rensink, O’'Regan, & Clark, 1997; Simons, 2000). Last, it is not yet known whether
objects that can be identified in a briefly presented scene are perceived, or inferred through the
perception of other co-occurring visual information such as low-level features (Oliva & Torralba,
2001), topological invariants (Chen, 2005) or texture information (Walker Renninger & Malik,
2004).

1.3. A scene-centered approach to high-level visual recognition

An alternative account of scene analysis is a scene-centered approach that treats the entire scene as
the atom of high-level recognition. Within this framework, the initial visual representation con-
structed by the visual system is at the level of the whole scene and not segmented objects, treating
each scene as if it has a unique shape (Oliva & Torralba, 2001). Instead of local geometric and part-
based visual primitives, this framework posits that global properties reflecting scene structure, layout
and function could act as primitives for scene categorization.

Formal work (Oliva & Torralba, 2001, 2002; Torralba & Oliva, 2002, 2003) has shown that scenes
that share the same basic-level category membership tend to have a similar spatial layout. For exam-
ple, a corridor is a long, narrow space with a great deal of perspective while a forest is a place with
dense texture throughout. Recent modeling work has shown success in identifying complex real-
world scenes at both superordinant and basic-levels from relatively low-level features (such as orien-
tation, texture and color), or more complex spatial layout properties such as texture, mean depth and
perspective, without the need for first identifying component objects (Fei-Fei & Perona, 2005; Oliva &
Torralba, 2001, 2002, 2006; Torralba & Oliva, 2002, 2003; Vogel & Schiele, 2007; Walker Renninger &
Malik, 2004). However, the extent to which human observers use such global features in recognizing
scenes is not yet known.

A scene-centered approach involves both global and holistic processing. Processing is global if it
builds a representation that is sensitive to the overall layout and structure of a visual scene (Kimchi,
1992; Navon, 1977). The influential global precedence effect (Navon, 1977, see Kimchi, 1992 for a re-
view) showed that observers were more sensitive to the global shape of hierarchical letter stimuli than
their component letters. Interestingly, the global precedence effect is particularly strong for stimuli
consisting of many-element patterns (Kimchi, 1998) as is the case in most real-world scenes. A con-
sequence of global processing is the ability to rapidly and accurately extract simple statistics, or sum-
mary information, from displays. For example, the mean size of elements in a set is accurately and
automatically perceived (Ariely, 2001; Chong & Treisman, 2003, 2005), as is the average orientation
of peripheral elements (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001); some contrast texture
descriptors (Chubb, Nam, Bindman, & Sperling, 2007) as well as the center of mass of a group of ob-
jects (Alvarez & Oliva, 2008). Global representations may also be implicitly learned, as observers are
able to implicitly use learned global layouts to facilitate visual search (Chun & Jiang, 1998; Torralba,
Oliva, Castelhano, & Henderson, 2006).

While all of these results highlight the importance of global structure and relations, an operational
definition of globality for the analysis of real-world scenes has been missing. Many properties of nat-
ural environment could be global and holistic in nature. For example, determining the level of clutter
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of a room, or perceiving the overall symmetry of the space are holistic decisions in that they cannot be
taken from local analysis only, but require relational analysis of multiple regions (Kimchi, 1992).

Object and scene-centered computations are likely to be complementary operations that give rise
to the perceived richness of scene identity by the end of a glance (~200-300 ms). Clearly, as objects
are often the entities that are acted on within the scene, their identities are central to scene under-
standing. However, some studies have indicated that the processing of local object information may
require more image exposure (Gordon, 2004) than that needed to identify the scene category (Oliva
& Schyns, 2000; Potter, 1975; Schyns & Oliva, 1994). In this study, we examine the extent to which
a global scene-centered approach can explain and predict the early stage of human rapid scene cate-
gorization performance. Beyond the principle of recognizing the “forest before the trees” (Navon,
1977), this work seeks to operationalize the notion of “globality” for rapid scene categorization, and
to provide a novel account of how human observers could identify the place as a “forest”, without first
having to recognize the “trees”.

1.4. Global properties as scene primitives

We propose a set of global properties that tap into different semantic levels of global scene descrip-
tion. Loosely following Gibson (1979) important descriptors of natural environments come from the
scene’s surface structures and the change of these structures with time (or constancy). These aspects
directly govern the possible actions, or affordances of the place. The global properties were therefore
chosen to capture information from these three levels of scene surface description, namely structure,
constancy and function.

A total of seven properties were chosen for the current study to reflect aspects of scene structure
(mean depth, openness and expansion), scene constancy (transience and temperature), and scene
function (concealment and navigability). A full description of each property is found in Table 1. These
properties were chosen on the basis of literature review (see below) and a pilot scene description
study (see Appendix A.1) with the requirement that they reflect as much variation in natural land-
scape categories as possible while tapping into different levels of scene description in terms of struc-

Table 1
Description of the seven global properties of natural scenes used in Experiments 1, 2 and 3

Structural properties

Openness [1,2,3,4] represents the magnitude of spatial enclosure. At one pole, there is a clear horizon and no occluders. At the
other pole, the scene is enclosed and bound by surfaces, textures and objects. Openness decreases when the number of
boundary elements increases

Expansion [1] refers to the degree of linear perspective in the scene. It ranges from a flat view on a surface to an environment
with strong parallel lines converging on a vanishing point

Mean depth [1,3] corresponds to the scale or size of the space, ranging from a close-up view on single surfaces or objects to
panoramic scenes

Constancy properties

Temperature [2,4] refers to the physical temperature of the environment if the observer was immersed in the scene. In other
words, it refers to how hot or cold an observer would feel inside the depicted place

Transience [4,5,7] refers to the rate at which the environment depicted in the image is changing. This can be related to
physical movement, such as running water or rustling leaves. It can also refer to the transience of the scene itself (fog is
lifting, sun is setting). At one extreme, the scene identity is changing only in geological time, and at the other, the identity
depends on the photograph being taken at that exact moment

Functional properties

Concealment [4,6] refers to how efficiently and completely a human would be able to hide in a space, or the probability of
hidden elements in the scene that would be difficult to search for. It ranges from complete exposure in a sparse space to
complete concealment due to dense and variable surfaces and objects

Navigability [2,4,5] corresponds to the ease of self-propelled movement through the scene. This ranges from complete
impenetrability of the space due to clutter, obstacles or treacherous conditions to free movement in any direction without
obstacle

The numbers refer to additional references describing the properties ([1] Oliva and Torralba (2001); [2] Gibson (1979); [3]
Torralba and Oliva (2002); [4] Greene and Oliva (2006); [5] Kaplan (1992); [6] Appelton (1975)).
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ture, constancy and function. Critically, the set of global properties listed here is not meant to be
exhaustive,! as other properties such as naturalness or roughness (the grain of texture and number
and variety of surfaces in the scene) have been shown to be important descriptors of scene content (Oliva
& Torralba, 2001). Rather, the goal here is to capture some of the variance in how real-world scenes vary
in structure, constancy and function, and to test the extent to which this information is involved in the
representation of natural scenes.

1.4.1. Properties of scene structure

Previous computational work has shown that basic-level natural scene categories tend to have a
particular spatial structure (or spatial envelope) that is well-captured in the properties of mean depth,
openness and expansion (Oliva & Torralba, 2001; Torralba & Oliva, 2002). In brief, the global property of
mean depth corresponds to the scale or size of the space the scene subtends, ranging from a close-up
view to panoramic environment. The degree of openness represents the magnitude of spatial enclosure
whereas the degree of expansion refers to the perspective of the spatial layout of the scene. Images
with similar magnitudes along these properties tend to belong to the same basic-level category: for
example, a “path through a forest” scene may be represented using these properties as “an enclosed
environment with moderate depth and considerable perspective”. Furthermore, these spatial proper-
ties may be computed directly from the image using relatively low-level image features (Oliva & Torr-
alba, 2001).

1.4.2. Properties of scene constancy

The degree of scene constancy is an essential attribute of natural surfaces (Cutting, 2002; Gibson,
1979). Global properties of constancy describe how much and how fast the scene surfaces are chang-
ing with time. Here, we evaluated the role of two properties of scene constancy: transience and
temperature.

Transience describes the rate at which scene surface changes occur, or alternatively stated, the
probability of surface change from one glance to the next. Places with the highest transience would
show actual movement such as a storm, or a rushing waterfall. The lowest transience places would
change only in geologic time, such as a barren cliff. Although the perception of transience would be
more naturalistically studied in a movie rather than a static image, humans can easily detect implied
motion from static images (Cutting, 2002; Freyd, 1983), and indeed this implied motion activates the
same brain regions as continuous motion (Kourtzi & Kanwisher, 2000). Temperature reflects the differ-
ences in visual appearance of a place during the changes of daytime and season, ranging from the in-
tense daytime heat of a desert, to a frigid snowy mountain.

1.4.3. Properties of scene function

The structure of scene surfaces and their change over time governs the sorts of actions that a per-
son can execute in an environment (Gibson, 1979). The global properties of navigability and conceal-
ment directly measure two types of human-environment interactions deemed to be important to
natural scene perception from previous work (Appelton, 1975; Gibson, 1958, 1979; Kaplan, 1992;
Warren, Kay, Zosh, Duchon, & Sahuc, 2001). Insofar as human perception evolved for goal-directed ac-
tion in the environment, the rapid visual estimation of possible safe paths through an environment
was critical to survival (Gibson, 1958). Likewise, being able to guide search for items camouflaged
by the environment (Merilaita, 2003), or to be able to be concealed oneself in the environment (Rama-
chandran, Tyler, Gregory, Rogers-Ramachandran, Duessing, Pillsbury & Ramachandran, 1996) have
high survival value.

1.5. Research questions
The goal of this study is to evaluate the extent to which a global scene-centered representation is

predictive of human performance in rapid natural scene categorization. In particular, we sought to

! See Appendix A.2 for a description of the space of global properties.
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investigate the following questions: (1) are global properties utilized by human observers to perform
rapid basic-level scene categorization? (2) Is the information from global properties sufficient for the
basic-level categorization of natural scenes? (3) How does the predictive power of a global property
representation compare to an object-centered one?

In a series of four behavioral and modeling experiments, we test the hypothesis that rapid human
basic-level scene categorization can be built from the conjunctive detection of global properties. After
obtaining normative ranking data on seven global properties for a large database of natural images
(Experiment 1), we test the use of this global information by humans for rapid scene categorization
(Experiment 2). Then, using a classifier (Experiment 3), we show that global properties are computa-
tionally sufficient to predict human performance in rapid scene categorization. Importantly, we show
that the nature of the false alarms made by the classifier when categorizing novel natural scenes is
statistically indistinguishable from human false alarms, and that both human observers and the clas-
sifier perform similarly under conditions of limited global property information. Critically, in Experi-
ment 4 we compare the global property classifier to two models trained on a local region-based scene
representation and observed that the global property classifier has a better fidelity in representing the
patterns of performance made by human observers in a rapid categorization task.

Although strict causality between global properties and basic-level scene categorization cannot be
provided here, the predictive power of the global property information and the convergence of many
separate analyses with both human observers and models support the hypothesis that an initial scene
representation may contain considerable global information of scene structure, constancy and
function.

2. General method
2.1. Observers

Observers in all experiments were 18-35 years old, with normal or corrected-to-normal vision. All
gave informed consent and were given monetary compensation of $10/h.

2.2. Materials

Eight basic-level categories of scenes were chosen to represent a variety of common natural out-
door environments: desert, field, forest, lake, mountain, ocean, river and waterfall. The authors
amassed a database of exemplars in these categories from a larger laboratory database of ~22,000
(256 x 256 pixel) full-color photographs collected from the web, commercial databases, personal dig-
ital images and scanned from books (Oliva & Torralba, 2001, 2006). From this large database, we se-
lected 500 images? chosen to reflect natural environmental variability. To estimate the typicality of each
image, independent, naive observers ranked each of the 500 images on its prototypically for each scene
category, using a 1-5 scale (see Appendix A.3 for a description of the typicality norming task). The most
prototypical 25 images for each of the eight basic-level category were kept, for a grand total of 200
images which were used in Experiment 1-4 (see details in Appendix A.3). The remaining 300 poly-cat-
egorical images were used in Experiment 3, Section 5.2.6. For human psychophysics experiments, we
used Matlab and the Psychophysics Toolbox as presentation software (Brainard, 1997; Pelli, 1997).

3. Experiment 1: Normative rankings of global properties on natural scenes

First, we obtained normative rankings on the 500 natural scenes along the seven global properties.
These normative rankings provide a description of each image and basic-level category in terms of
their global structural, constancy and functional properties. Namely, each image is described by seven
components, each component representing the magnitude along each global property dimension (see
examples in Fig. A2 in Appendix A.2).

2 The image database may be viewed on the authors’ web site.
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As Experiments 2-4 involve scene categorization using global property information, robust rank-
ings are essential for selecting images for the human psychophysics in Experiment 2 as well as for
training and testing the classifier used in Experiment 3.

3.1. Method

3.1.1. Participants
Fifty-five observers (25 males) ranked the database along at least one global property, and each
property was ranked by at least 10 observers.

3.1.2. Procedure

Images were ranked using a hierarchical grouping procedure (Fig. 1, Oliva & Torralba, 2001). This
allows the ranking of a large number of images at once, in the context of one another.

For a given global property, each participant ranked two sets of 100 images. The two halves of the
database were pre-chosen by the authors to contain roughly equal numbers of images in each seman-
tic category. One hundred picture thumbnails appeared on an Apple 30” monitor (size of 1.5 x 1.5 deg/
thumbnail). The interface allowed participants to drag and drop images around the screen and to view
a larger version of the image by double-clicking on the thumbnail.

Participants were given the name and description of a global property at the start of a ranking trial.
They were instructed to divide the images into two groups based on a specific global property such
that images with a high magnitude along the global property were placed on the right-hand side of
the screen while images with a low magnitude were placed on the left (see Fig. 1). In a second step,
participants were asked to split each of the two groups into two finer divisions, creating four groups
of images that range in magnitudes along the specified global property. Finally, the four groups were
split again to form a total of eight groups, ordered from the lowest to the highest magnitude for a given
property. At any point during the trial, participants were allowed to move an image to a different sub-
group to refine the ranking. Participants repeated this hierarchical sorting process on the remaining
100 pictures in database along the specified global property. Participants had unlimited time to com-
plete the task, but on average completed a trial in 30 min. As the task was time consuming, not all par-
ticipants ranked all seven properties, and we are reporting results from 10 observers per property,
normalized to fit in the range of 0-1.

3.2. Results

3.2.1. General description

Examples of images that were ranked as low, medium and high for each global property are shown
in Fig. 2. Global properties are continuous perceptual dimensions, and therefore image ranks spanned
the range of possible values across the database (Scattergrams of rankings by category for all global

=

=

Fig. 1. A schematic illustration of the hierarchical grouping task of Experiment 1. Here, a ranking along the global property
temperature is portrayed. (a) The images are divided into two groups with the “colder” scenes on the left and the “warmer”
scenes on the right. (b) Finer rankings are created by dividing the two initial groups into two subgroups. (c) Images in each
quadrant are again divided into two subgroups to create a total of eight groups, ranked from the “coldest” scenes to the
“hottest” scenes.
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Fig. 2. Examples of scenes with low, medium and high rankings from Experiment 1 along each global property.
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properties can be seen in Fig. A1, Appendix A.2). It is essential to note in Fig. A1 the high scatter of
rankings indicates that the basic-level category label is not the determinant of the global property
ranking for any single global property. In other words, concealment is not just another way of saying
forestness.

In order to compare the time-unlimited rankings of Experiment 1 to the speeded categorization
task of Experiment 2, it is necessary to know that global properties can be rapidly and accurately per-
ceived by human observers. Furthermore, a similar ranking of images along global properties when
presentation time is limited ensures that the rankings of Experiment 1 are not due to inferences based
on the scene schema. To this end, we ran a control speeded classification task® (see the description of
this experiment in Appendix A.4). Results showed that indeed, global properties could be estimated from
limited presentation time. The mean correlation of the speeded classification to the hierarchical rankings
was 0.82, ranging from 0.70 for concealment to 0.96 for temperature (all significant), see Appendix A.4
for more details.

3.2.2. Between-observer consistency in ranking images along each global property

The extent to which global properties represent a reasonable basis for natural scene recognition de-
pends critically on the extent to which the global properties can be ranked consistently by human
observers.

Here we are using the 200 prototypical images as they give strong ground truth for the purpose of
categorization in Experiments 2-4. We computed observers’ consistency as a Spearman’s rank-order
correlation for each possible pairing of observers for all seven global properties. The mean and stan-
dard error for these correlation coefficients by global property are shown in Table 2. Between-observer
Spearman’s rank-order correlations ranged from 0.61 (transience) to 0.83 (openness), and were all sta-
tistically significant (p < 0.01). This indicates that different observers estimated the degree of these
global properties in similar ways (see also Oliva & Torralba, 2001; Vogel & Schiele, 2007 for similar
results) and agreed well on which images represented a high, medium and low magnitude for a given
global property.

3.2.3. Global property descriptions of semantic categories

The subsequent experiments test the utility of a global property representation for rapid scene cat-
egorization. In this representation, images are represented as points in a seven-dimensional space
where each axis corresponds to a global property. How are different basic-level categories described
in this space?

To visualize the global property signature of each semantic category, we computed the category
means and ranking spread for each global property. Fig. 3 shows box-and-whisker plots for the global
property rankings for each category, creating a conceptual signature of the category. For example,
most deserts were ranked as hot, open and highly navigable environments, with a low magnitude along
the transience and concealment dimensions while most waterfalls are closed, highly transient environ-
ments that are less navigable. Other categories, such as lakes, have global property ranking averages
that were intermediate along each dimension, meaning that most lakes have a medium level of open-
ness and expansion, are neither environments perceived as very cold or very warm, and so on.

Euclidean distance measures between each pair of basic-level categories provided a conceptual dis-
tance metric between basic-level categories (see Table A4 and details in Appendix A.6). As expected
from intuition, categories like waterfall and river are close to each other, but categories like field and
waterfall are very distant.

3 Appendix A.4 describes a speeded classification task, to verify that the global properties of natural images are perceived under
conditions of limited presentation time. The logic, as suggested by an anonymous reviewer, is that under limited presentation time,
the perception of global properties might be less contaminated by other semantic information about the scene category. Although
category information cannot be completely abolished in a short presentation time, other data in a forthcoming article by the
authors show that the detection of global properties in a scene is significantly better than the detection of the same scene’s basic-
level category at a 20 ms presentation time (see also Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007 showing that the global
property of naturalness is available faster than a scene’s basic-level category), indicating that some category information was
suppressed in the manipulation.
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Table 2
Spearman'’s rank-order correlations along with standard error of the mean between observers for each global property from the
rankings given in Experiment 1

Openness Expansion Mean depth Temperature Transience Concealment Navigability
r 0.83 0.64+0 0.76 0.73 0.61 0.65 0.69
sem 0.01 0.01+0 0.01 0.01 0.01 0.01 0.01

3.3. Discussion

Here, we have shown that observers can provide normative rankings on global properties with a
high degree of consistency. We have also provided a conceptual description of basic-level category
prototypes as the mean global property rankings of a category.

To what extent do the scene-centered semantic category descriptions shown in Fig. 3 contribute to
human observers’ mental representations of scene identity? We test this explicitly in Experiment 2.

4. Experiment 2: Human use of global properties in a rapid scene categorization task

The goal of Experiment 2 was to test the extent to which global property information in natural
scenes is utilized by human observers to perform rapid basic-level scene categorization. A global prop-
erty-based scene representation makes the prediction that scenes from different semantic categories
but with similar rankings along a global property (e.g. oceans and fields are both open environments)
will be more often confused with each other in a rapid categorization task than scenes that are not
similar along a global property (e.g. an open ocean view and a closed waterfall). We tested this hypoth-
esis systematically by recording the false alarm rates for each basic-level category (serving as targets
in blocked yes-no forced choice task) when viewed among distractor images that all shared a partic-
ular global property pole (such as high concealment or low openness).

4.1. Method

4.1.1. Participants

For a purpose of completeness and replication of our effects, two groups of participants par-
ticipated in Experiment 2. First, four participants (1 male) completed the entire experimental de-
sign. Throughout the experiment, we will refer to this group as the complete-observer group.
While having all observers complete all blocks of the experiment is statistically more robust, it
could also lead to over-learning of the target images. To eliminate the learning effect, a meta-ob-
server group consisting of 73 individuals (41 male) completed at least 8 blocks (400 trials) of the
design, for a total of eight meta-observers (see Appendix A.5 for details on the analysis of meta-
observer data). Meta-observer analysis is justified here because the critical analyses are on the
image items.

4.1.2. Design

The experimental design consisted of a full matrix of target-distractor blocks where each basic-le-
vel category was to be detected amongst distractor images from different semantic categories that
shared a similar ranking along one global property. Both high and low magnitudes of each global prop-
erty were used, yielding 112 blocked conditions (8 target categories x 7 global properties x 2 magni-
tudes). For example, a block would consist of one semantic category (such as forest) seen among
images that were all ranked in Experiment 1 as (for example) high transience. The distractor sets were
chosen to reflect a wide variety of semantic categories, and to vary in other global properties while
keeping ranks in the manipulated property constant. Therefore, as best as possible, global properties
were independently manipulated in this design. Distractor sets for a given global property magnitude
were therefore chosen uniquely for each category. High and low rankings were defined as imaged
ranked as >0.6 and <0.3 for a given global property.
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Fig. 3. Box-and-whisker plots of global property rankings for each semantic category, calculated from the ranking data in
Experiment 1. Properties are, right to left, C, concealment; Tr, transience; N, navigability; Te, temperature; O, openness; E,
expansion and Md, mean depth. Lines indicate median rankings, boxes indicate quartiles and whiskers indicate range.
Significant outlier images are shown as crosses.

4.1.3. Procedure
Each of the 112 experimental blocks contained 25 target and 25 distractor images. At the start of
each block, participants were given the name of the target category and were instructed to respond as
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quickly and accurately as possible with a key press (“1” for yes, “0” for no) as to whether each image
belonged to the target category. Each trial started with a 250 ms fixation cross followed by an image
displayed for 30 ms, immediately followed by a 1/f noise mask presented for 80 ms. Visual feedback
(the word “error”) followed each incorrect trial for 300 ms.

4.2. Results

For all analyses, we report results for both the complete-observer and the meta-observer groups.
Results from the two groups support each other well. In addition to providing a self-replication, exam-
ining individuals completing the entire design reduces the noise seen from pooling individual perfor-
mances. On the other hand, the meta-observer group reduces the problem of over-learning the target
images.

In the following, we report four different analyses on both correct detection (hit) and false alarms:
4.21—the general performance of human observers in rapid basic-level scene categorization; 4.22—the
power of target-distractor global property resemblance in predicting which particular images will
yield false alarms to a basic-level category target.; 4.23—the relation between false alarms made be-
tween basic-level categories and the relative distances of those categories in global property space;
4.24—the effect of global property similarity on reaction time.

4.2.1. Basic-level scene categorization: Overall performance

The complete-observers’ average hit rate was 0.87 with a mean false alarm rate of 0.19. This level of
performance corresponds to an average d’ sensitivity of 2.07. Performance by semantic category is de-
tailed in Table 3. With this short 30 ms presentation time, observers could reliably detect all scene cat-
egories (all d’ > 1.0). However, critical for subsequent analyses, observers made substantial false
alarms to each category as well, giving a rich range of performance data to work with.

For the 8 meta-observers, the mean hit rate was 0.78, with a mean false alarm rate of 0.24. This
corresponds to a d’ of 1.58. For the complete-observer group, we looked at hit rate across the 14 times
they viewed the target images. For each observer, we performed a linear regression on the hit rate over
these blocks and found that for 3 of the 4 subjects, there was a positive slope (mean — 0.095, just un-
der 1% per block), indicating that there was learning of the targets over the course of the experiment.

4.2.2. The role of global properties on basic-level categorization performance

A prediction of the scene-centered approach is that distractor images that share a global property
ranking with the target prototype should yield more false alarms than images that are less similar to
the target prototype. A pictorial representation of sample results is shown in Fig. 4: forests, which tend
to be closed (cf. Fig. 3) have more false alarms to closed distractors than to open distractors, and the
opposite is true of fields, which tend to be open environments.

A global property-based scene representation would predict that any image’s confusability to any
target category could be predicted from this image’s global property distance to the target category.

Table 3
Overall human performance in rapid categorization task of Experiment 2
Hit False alarm d

Desert 0.83 (0.88) 0.18 (0.17) 1.88 (2.13)
Field 0.77 (0.88) 0.30 (0.20) 1.27 (2.02)
Forest 0.88 (0.96) 0.17 (0.11) 2.23(2.97)
Lake 0.74 (0.91) 0.26 (0.18) 1.32 (2.28)
Mountain 0.78 (0.88) 0.25 (0.17) 1.50 (2.15)
Ocean 0.68 (0.87) 0.27 (0.25) 1.11 (1.79)
River 0.69 (0.89) 0.30 (0.23) 1.03 (1.97)
Waterfall 0.91 (0.95) 0.20 (0.16) 2.29 (2.67)

Shown are hit rate, false alarm rate and sensitivity measure d’, measured as the mean for each category over eight meta-
observers. Numbers in parentheses show the same measurements for the complete-observer design.
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Fig. 4. Illustration of human performance along different distractor sets in Experiment 2. Distractor sets that share a global
property with the target category (closed is a property of forests and open is a property of fields) yield more false alarms than
distractor sets that do not. Representative numbers taken from meta-observers’ data.

For example, in general, mountain scenes were ranked as moderately-low navigability (cf. Fig. 3).
Therefore, in a block where mountains were to be detected among low navigability distractors, we
would expect more false alarms to distractors that are also moderately-low navigability than non-nav-
igable distractors of greater magnitude (such as a very dense forest).

In each of the 112 experimental blocks, a single semantic category was to be detected among dis-
tractor images that had a common global property rank. For each distractor image in these blocks, we
computed the one-dimensional distance between its global property rank on the manipulated global
property to the mean global property rank of the target category for the same property. For example,
in a block where deserts were viewed among low-expansion scenes, each distractor would be ex-
pressed as the distance between its rank on expansion (given from Experiment 1), and the mean des-
ert rank for expansion (cf. Fig. 3).

Therefore, all of the distractor images in the entire experiment could be ranked from most similar
to the target category to least. If global property information is used to help human observers estimate
the image category, then global property resemblance should predict the false alarms that are made
during the experiment.

To test, we first binned the false alarm data into quartiles based on ascending target-distractor dis-
tance. The mean percent correct rejections for each quartile for each data set are shown in Table 4. For
both groups, the accuracies increase monotonically with distance, indicating that difficulty of image
categorization is in part due to the resemblance of the distractors to the target category prototype. Hu-
man categorization performance is not obliterated by this one-dimensional similarity, however as
even the most similar 1% of distractors are still classified significantly above chance by the meta-
observers: 64% correct, t(198)=5.5, p < 0.0001.

We also performed a correlation on the distractor distance data, using the mean false alarm rate for
each distractor to its distance from target prototype mean. For the complete-observer group, we found
a striking relation with correlation coefficients ranging from 0.98 to 0.91, when binning the data,
respectively, in 8 bins and 25 bins (for all correlations, p < 0.0001). For the meta-observers, correla-
tions ranged from 0.95 for 8 bins, to 0.81 for 25 bins, all correlations were significant (p < 0.001).

Table 4
Average human correct rejection performance for both experimental groups in Experiment 2 on distractor images arranged from
smallest distance to target category prototype to largest

Quartile 25 50 75 100
% Correct rejection (meta-observers) 71.9 74.5 78.1 82.1
% Correct rejection (complete-observer) 75.9 78.1 84.4 88.5

Performance suffers with decreasing distance to target prototype, but remains above chance.
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This strong relation shows that images that resemble the category global property prototype are
more often mistaken with the target category than other images, and suggests that with a short pre-
sentation time, global property information is used by human observers to categorize natural scenes
into basic-level categories.

4.2.3. Distance in global property space predicts pairwise category false alarms

Are some semantic categories confused with each other more often than others? Can such asym-
metries be understood through a scene-centered global property representation? Ashby and Lee
(1991) showed that false alarms increase with increasing similarity between targets and distractors
in a detection task. Therefore, if our global properties are incorporated into the human scene represen-
tation, we would expect false alarms made between semantic categories in the rapid categorization
task to follow from the categories’ similarity in global property space (from Experiment 1, see Fig. 3).

As the experimental task was a yes—-no forced choice within a block of uniform target categories,
the false alarms made in a given block provide insight into which category observers believed the im-
age to be. For example, a false alarm to a forest image while looking for river targets indicates that the
observer believed the picture of the forest to be a river. False alarm rates between each pair of cate-
gories were thus computed (see Appendix A.6 for more details).

We then computed the Euclidean distance between each category in the global property space
(n (n - 1)/2 =28 pairwise comparisons for the n = 8 categories). This is a dissimilarity metric: larger
values indicate more differences between two categories (see Appendix A.5 for more details).

For the complete-observer group, we found a strong negative correlation between category dissim-
ilarity and false alarm rates (r = —0.76, p < 0.001), indicating that pairs of categories that are similar in
global property space (such as river and waterfall) are more often confused by human observers than
pairs of categories that are more distant, such as field and waterfall. The same pattern held for the
meta-observers: (r=—0.78, p < 0.001).

4.2.4. The reaction time effects of global property similarity

The previous analyses have shown that the probability of human observers mis-categorizing
images given a brief presentation is strongly related to how similar a given distractor is to the target
category in global property space. Is there evidence of global property similarity for the images that
are correctly categorized? In particular, is the speed at which an image can be correctly categorized
inversely related to how similar it is to the category prototype? One can imagine that a distractor shar-
ing very few global properties with the target category might be more quickly rejected than a distrac-
tor that more closely resembles the target category.

For this analysis, we report data from the complete-observer group as individual differences in
reaction time from the meta-observer group are confounded in the blocked design. For all correctly
rejected distractors, we correlated the participants’ reaction time to the Euclidean distance of that dis-
tractor to the target category in global property space. We found that there was a strong inverse rela-
tion between target-distractor resemblance and reaction time (r = —0.82, p < 0.0001), indicating that
distractors that are more dissimilar to the target category are more quickly rejected than distractors
that are more similar. In other words, similarity in global property space predicts the mistakes that
human observers tend to make as well as which images will take longer to categorize.

4.3. Discussion

The previous analyses have shown that with a very brief image exposure, human observers are able
to detect the basic-level category of a natural scene substantially above chance (Section 4.2.1; see also
Joubert et al., 2007; Oliva & Schyns, 2000; Potter, 1975; Rousselet et al., 2005). However, participants’
performances were far below ceiling, suggesting that the scene representation afforded by this
amount of image exposure was incomplete, providing a rich array of false alarms that are useful for
understanding the initial representation.

In this experiment, we have shown converging evidence from different analyses indicating that hu-
man observers are sensitive to global property information during very brief exposures to natural
images, and that global information appears to inform basic-level categorization.
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First, we have shown that the probability of false alarm to a given image can be very well predicted
from the one-dimensional distance of this image’s rank along a global property to the target category
prototype for that same property (Section 4.2.2). We have also shown that semantic categories that
are more often confused by human observers are more similar to one another in global property space
(Section 4.2.3). As distractor images varied in semantic categories, other global properties and objects,
this implies that global property information makes up a substantial part of the initial scene represen-
tation. Last, we have shown that the reaction times for correctly rejected distractors were also related
to the distractors’ resemblance to the target category (Section 4.2.4). Altogether, these results support
a scene-centered view of scene understanding that asserts that spatial and functional global properties
are potential primitives of scene recognition.

5. Experiment 3: The computational sufficiency of global properties for basic-level scene
categorization

We have shown so far that global property information strongly modulates human performance in
a rapid scene categorization task. To what extent is a global property representation sufficient to pre-
dict human rapid scene categorization performance? To answer this question, we built a conceptual
naive Bayes classifier whose only information about each scene image was from the normative rank-
ing data of Experiment 1. Therefore, the classifier is agnosic to any other visual information (color, tex-
ture, objects) that human observers could have used to perform the task. Here, we compare the
performance of this classifier (correct and false alarms) to the human scene categorization perfor-
mance of Experiment 2.

5.1. Method

The training input to the classifier consisted of the ranks that each image received for each of the
seven global properties along with a label indicating which semantic category the image belonged to.
From this input, the classifier estimated Gaussian distributions for each category along each global
property. Then, given a test image (not used in training), the classifier computed the most likely
semantic category for the set of global properties given to it

k
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where the log likelihood of each category j is estimated from the distributions of each property dimen-
sion k (for background, see Mitchell, 1997). For a discussion on the assumptions of such a classifier, see
Appendix A.6.

The classifier was run 25 times, testing each image in turn using a leave-one-out design. In each
run, 24 images from each semantic category (192 total) served as training, and the last eight (one from
each category) were used for testing.

It is of note that the naive Bayes classifier was chosen to be the simplest classifier for testing this
global property representation. All reported results were also done with a linear discriminant analysis
with no significant performance differences (see Appendix A.7).

5.2. Results

In comparing a classifier’s performance to human performance for the goal of gaining insight into
the human representation, it is necessary to examine classifier performance at several levels. Similar
overall performance is not enough since any psychophysical task can be made arbitrarily harder or
easier by changing presentation time, for example. The errors made by a classifier are more informa-
tive than the overall correct performance because similarities in errors make a stronger argument for a
similar representation. Conversely, dissimilarities in the patterns of errors are informative in refining
hypotheses. We report here four distinct types of analyses using data from Experiments 1, 2 and 3:
Section 5.2.1—the overall performance of the classifier relative to human scene categorization perfor-
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mance from Experiment 2; Section 5.2.2—an examination of the types of classification errors made by
both humans and classifier; Section 5.2.3—an examination of the distances between categories in our
scene-centered space (Experiment 1) and how this predicts errors made by both classifier and human
observers; and Sections 5.2.4 and 5.2.5—a comparison of how the classifier and human observers per-
form under conditions where a complete global property representation cannot be used for scene cat-
egorization. As a last test of this model (Section 5.2.6), we compare the classifier’s responses to non-
prototypical images to that of the human norming data of Experiment 1 (see Appendix A.3).

5.2.1. Classifier performance: Percent correct and correlation to human basic-level category performance

Overall, the performance of the classifier was remarkably similar to that of human meta-observers:
the overall proportion correct for the classifier was 0.77 (0.77 for human meta-observers, t(7) < 1). The
performance for the complete-observer group was higher (proportion correct was 0.86), in part be-
cause of the over-learning of the stimuli.

To get an idea of how classifier performance compared to human performance by basic-level cat-
egory, we correlated meta-observer’s correct performance and classifier correct performance and
found a striking similarity: the by-category correlation was r=0.88, p <0.01 (see Fig. 5). This level
of agreement did not differ from meta-observer agreements (r = 0.78: t(7) = 1.72, p = 0.13), indicating
that the classifier’s overall correct performance and correct performance by category were indistin-
guishable from human performances. Similarly, the correlation between the classifier and the mean
correct performance of the complete-observer group was similarly high (r=0.75, p < 0.01).

5.2.2. Error analysis: Easy and difficult images

Do human observers and the classifier have difficulty classifying the same images? We looked at
the errors that both humans and classifier made in a by-image item analysis, comparing the probabil-
ity of classifier failure (average performance in 4, 10 and 25 bins, due to the binary classification of the
200 images by the classifier) to human false alarm rates (over the same bins).

We found a significant correlation between the classifier and the meta-observers (for 10 bins,
r=0.89, p <0.0001) indicating that indeed humans and classifier have trouble categorizing the same
images. Bin size did not affect the nature of the result: using bin sizes of 4 and 25, the correlation coef-
ficients were 0.97 and 0.76, respectively (all significant). Similarly, the correlation between the clas-
sifier and participants from the complete-observers design were all significant (p < 0.001, r=0.96,
r=0.81, and r = 0.64 for the same bin sizes).
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Fig. 5. Categorization performance (percent correct) of naive Bayes classifier in Experiment 3 is well-correlated with human
rapid categorization performance from Experiment 2 (meta-observer data).
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5.2.3. Qualitative error analysis: Distribution of error types

Next, we sought to determine the qualitative similarity of the false alarms made by both classifier
and human observers. The yes-no forced choice task of the human observers allowed insights into
which category observers believed an image to be given a false alarm, and this can be compared di-
rectly to the output of the classifier. In other words, in a block where the target image was river,
and an observer made a false alarm to an image of a forest, does the classifier also call this forest a
river?

Given an error made by the classifier, we found that at least one human observer in the meta-ob-
server group made the same false alarm in 87% of the images (88% for the complete-observer group).
However, human observers are also prone to finger errors, attentional lapses and other possible mis-
takes, so when we include only the false alarms that at least five of the eight meta-observers made;
there was human-classifier correspondence on 66% of the images (59% for at least 3 of the 4 partici-
pants who completed the entire experiment).

Examples of the correct responses and the false alarms made by the classifier and human observers
(meta-observer group) are shown in Fig. 6. This indicates that the scene categorization performance of
a classifier knowing only about global property rankings is highly similar to that of human observers
when given a 30 ms exposure to a scene image.

We have shown so far that the overall performance of the global property classifier as well as the
types of errors it made is highly similar to the performance of human observers in a rapid scene cat-
egorization task. To further compare classifier to human performance, we created a category-by-cat-
egory confusion matrix for the global property classifier (see false alarms Table A6 in Appendix A.6)
and human observers (human matrix of false alarms from Experiment 2, see Table A5 in Appendix
A.6). We found that the between-category confusions made by the classifier were highly correlated
with those made by human observers (r=0.77, p <0.0001 for complete-observers and r=0.73 for
the meta-observers, p < 0.0001). It is of note that the diagonals of the confusion matrices (the correct
detections) were taken out for both as it would have led to a spuriously high correlation. This analysis
further suggests that a scene representation containing only global property information predicts ra-
pid human scene categorization, a result which strengthens the hypothesis that a global scene-cen-
tered representation may be formed by human observers at the beginning of the glance.

5.2.4. “Knocking-out” a global property I: Missing properties

A stronger case for a global scene representation in human observers would be if the classifier and
humans are similarly impaired under degraded conditions. We have shown so far that these global
properties are sufficient to predict human performance in rapid scene categorization. From Experi-
ment 2, we found that human observers are remarkably flexible in scene categorization under condi-
tions where target—distractor similarity along a global property dimension decreases the utility of that
dimension for categorization—performance suffers but remains above chance with such incomplete
information. How does the classifier perform when similarly impaired? To test, we compared human
false alarms in Experiment 2 to runs of the classifier trained with all global properties but one in turn.
Experiment 2 “knocked-out” global properties for human observers by matching the target and dis-
tractors on that property, reducing the utility of the property for categorization. For example, assum-
ing high transience is a diagnostic property of oceans, classifying oceans among high transience scene
distractors will render transience useless for the task. Likewise, training the classifier without a prop-
erty “knocks-out” that property because there is no representation of the property at all.

All training and testing procedures were identical to the previously presented method in Section
5.1 except that all images were represented by six global properties instead of the full set of seven,
which served as a performance baseline. For the human comparison, for each global property we used
the pole (high or low rank) that yielded the most false alarms. For each category, we compared these
false alarm rates to the average performance of that category over all distractor conditions.

For each basic-level category we compare the increase in false alarms for the classifier to the in-
crease in false alarms for human observers. Interestingly, “knocking-out” the use of a global property
decreased performance to a similar degree: overall increase in false alarms by category was an average
of 5.2% more for the classifier and 3.2% more for the complete-observer group (3.1% for meta-observ-
ers, difference between humans and model were not significant, t(7) < 1) indicating that the loss of
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"desert" "lake"  "mountain" "mountain"  "river" "river"
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Fig. 6. Examples of human and model performances. (A) (bold titles) corresponds to the correct responses made by both
humans (Experiment 2) and the global property classifier (Experiment 3) for the above scene pictures. The other rows (with
titles in quotes) represent categorization errors made, respectively, by both humans and the model (B); by the model only (C);
by the humans only (D), for the respective scene pictures.

global property information affected both human observers and the model to a similar degree, and
that the classifier’s representation was similarly robust to incomplete global property information.
Furthermore, the correlation between classifier and human correct performance by category remains
strong in this manipulation (r=0.81, p <0.0001 for the complete-observers, and r=0.83 for meta-
observers), indicating that the absence of each global property is similarly disruptive to categorization,
and suggesting that both observer types are using similar diagnostic global property information to
perform the categorization task. Again, the correlation existing between the classifier and mean hu-
man performance was not different from the agreement between meta-observers ({(7) < 1), indicating
that the classifier’s performance is indistinguishable from human observers.

5.2.5. “Knocking-out” a global property II: The role of all properties

What is the limit of the classifier’s ability to deal with incomplete information and to what extent
are all of the global properties necessary to predict human categorization performance? To address
this question, we ran the classifier on exhaustive combinations of incomplete global property data,
from one to six global properties.

The average performance of the classifier for each number of global properties used is shown in
Fig. 7A. Interestingly, when the classifier is trained on only one of the global properties, categorization
performance is still significantly above chance (30%, chance being 12.5%, t(6) = 7.93, p <0.0001) and
reaches a plateau when combinations of six global properties are used (74%).
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Fig. 7. (A) Classifier’s performance in Experiment 3 when trained with incomplete data, using from 1 to 7 global properties. The
classifier can perform above chance with only one global property (30%), and performance linearly increases with additional
properties. Chance level is indicated with the dotted line. (B) Mean classifier performance when trained with incomplete data
that contained a particular global property. Classifier performed similarly when any particular global property was present.

Next, we looked at which combinations of global properties lead to maximum performance for all
eight basic-level categories. We tabulated the average performance of global property combinations
containing each global property. If the maximum classifier performance is carried by one or two prop-
erties, one would expect maximum performance when these properties are present and diminished
performance with other combinations. Instead, Fig. 7B shows that all properties were represented
in these combinations with similar frequency (between 54% and 61% correct). Although global prop-
erty combinations containing transience are slightly higher than the mean performance (t(6)= 2.0,
p<0.05), and combinations containing expansion trend toward lower performance (t(6)=1.8,
p = 0.12), this result suggests that overall categorization performance is not carried by one or two glo-
bal properties, but rather that each global property provides essential information for classifying all
eight basic-level categories. This result is conferred by the multi-dimensional scaling solution on
the rankings as described in Appendix A.2 (showing that there is no obvious asymptote in the stress
of a six-dimensional solution over a seven-dimensional solution).

5.2.6. Global property classifier generalizes to less prototypical images

Up until this point, all scene images we have used have been ranked as being very prototypical for a
basic-level scene category. However, scenes, unlike objects can often be members of more than one
basic-level category (Tversky & Hemenway, 1983). A candidate scene representation is not complete
without being able to generalize to and deal with images that span category boundaries. Many of the
images in the natural world contain elements from multiple categories (poly-categorical). Take, for
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example the bottom image in Fig. 8. This scene contains elements that could reasonably be assigned to

forest, mountain, river or lake scenes. What assignment will the global property classifier give to such
a scene?

Mountain, Lake, Ocean

Mountain, Lake, Ocean

Forest, River

Forest, River

Desert, Mountain, Lake

Desert, Lake, Mountain

Mountain, River, Lake,Forest

Mountain, Lake, River, Forest

Fig. 8. Examples of non-prototypical images. Human observers ranked the images according to their prototypicality along one
or more categories (Appendix A.3). For all examples (H) indicates the order of prototypicality given by the human observers and
(C) is the order of classification given by the global property classifier. Although the classifier rates the probability of the image
being in each category, we show only the top choices for the same number of categories ranked by the human observers. In
other words, if the human observers gave prototypicality rankings for two categories, we show the top two choices of the
classifier.
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Recall that the 200 typical scene images used so far were chosen from a larger pool of 500 images
that had been ranked by human observers by how prototypical they were for these eight scene cate-
gories (Appendix A.3). Recall also that the global property classifier is a maximum likelihood estima-
tor, who computes the probability of an image being in each of the eight basic-level categories.
Therefore, we can directly compare the order of category membership given by the human observers
to the order of category probability given by the classifier (see examples in Fig. 8).

First, for the 300 poly-categorical images, we compared the top-ranked choice from a category-
ranking experiment (see Appendix A.3) to the most likely category given by the classifier when trained
on the 200 prototypical images. We found that the classifier’s top category choice matched human
observers’ top category choice in 56% of images. It is of note that we would not expect the classifier
performance on poly-categorical images to exceed its percent correct on prototype images (77%, Sec-
tion 5.2.1). It is also unreasonable to expect the model to agree better with human observers than
these observers agree with each other about an image’s category (Spearman’s correlation 0.73, see
Appendix A.3).

A further complexity is that an image might be ranked equally prototypical for multiple categories,
have possibility to be ranked in most categories, or have low overall prototypicality for all of the cat-
egories used in this experiment. In order to account for these, we then only analyzed images that re-
ceived a score of at least 3 out of 5 for a category on the prototypicality scale (see Appendix A.3 for
method details), and those without a close second-place category rank. For these images, the model’s
top category choice matched the human observers’ top category choice in 62% of the images. It is also
notable that the top two category choices for the model match the top choice for the human observers
in 92% of the images.

5.3. Discussion

Given that Experiment 2 showed that human observers were sensitive to global property informa-
tion while rapidly categorizing natural scenes, in Experiment 3 we investigated the extent to which a
scene-centered global description is sufficient to predict human rapid scene categorization perfor-
mances. To do this, we employed a simple classifier whose only image information was the global
property ranking data from Experiment 1. In terms of overall accuracy, the classifier is comparable
to human performance (Section 5.2.1), and has a similar performance by semantic category (Section
5.2.1), indicating that the same semantic categories that are easier for human observers are also easier
for the classifier. We have also shown that the errors made by the classifier are similar to the false
alarms made by human observers (Sections 5.2.2 and 5.2.3). Critically, the exact errors are often
repeatable (in other words, if a human observer makes a false alarm to a particular mountain as a for-
est, the classifier will most often make the same mistake). We have shown that the classifier, when
trained on incomplete global property data, replicates the false alarms made by human observers in
Experiment 2 when certain global properties were rendered less diagnostic for the classification task
(Sections 5.2.4 and 5.2.5). Finally, we have shown that the global property representation can deal
with non-prototypical images as well as it deals with prototypical images (Section 5.2.6). Altogether,
we have shown that in terms of accuracy and errors, a representation that only contains global prop-
erty information has high predictive value for human performance at rapid basic-level scene
categorization.

6. Experiment 4: An alternative hypothesis—comparing a global property representation to a
local region representation

The global property-based classifier shows remarkable human-like performance, in terms of both
quantity and fidelity, in a rapid scene categorization task. Could any reasonably informative represen-
tation achieve such high fidelity? Basic-level scene categories are also defined by the objects and re-
gions that they contain. Here, we test the utility of a local representation for predicting human rapid
natural scene categorization by creating an alternative representation of our database that explicitly
represents all of the local regions and objects in each scene. In order to fairly test the local represen-
tation, we employed two different models using these data, based on implementations of proposals in
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the literature: the local semantic concept model (Vogel & Schiele, 2007) and the prominent object
model (Biederman, 1981; Friedman, 1979).

The local semantic concept model presents the case where an exhaustive list of scene regions and
objects is created, and that scene recognition takes place from this list. Vogel and Schiele (2007)
showed that very good machine scene classification could be done by representing a natural landscape
image as a collection of local region names drawn from a small vocabulary of semantic concepts: an
image could be represented as 9% sky, 25% rock, and 66% water, for example. Here, we implement a
similar idea, using the names of all regions and objects using a set of basic-level and superordinant
region concepts along with their percent image area in a scene (see Section 6.1 and Appendix A.8
for details).

The prominent object model represents the case where scene recognition proceeds from a single,
prominent object or region rather than an exhaustive list. This has been a popular potential mecha-
nism for scene understanding proposed in the literature (Biederman, 1981; Friedman, 1979). Our
implementation calculates the predictability of a scene category given the identity of the largest anno-
tated object in the image. For example, we would predict that an image whose largest object is “trees”
to be a forest, or an image whose largest region is “grass” is likely a field. Of course, objects can be
prominent without necessarily being the largest objects, and a related literature is devoted to deter-
mining the image features that make an object prominent, or salient (for a review, see Itti & Koch,
2001). As the nature of these features is still relatively open, here we are limiting our definition of
“prominent” to only include size.

It is important to note that both local region models present two conceptually different views
about how scene recognition might proceed from local region and object information. The local seman-
tic concept model categorizes a scene based on the co-occurrence of regions from an exhaustive list of
scene regions, assuming that in a glance all objects can be segmented, perceived and abstracted into
concepts. This model represents the best-case scenario for the local approach, in which the identities
of all of the objects and regions in the scene are known, as well as their relative sizes.

By contrast, the prominent object model assumes that not all regions have equal diagnostic informa-
tion for the scene category, and that in particular, if an object is prominent in the scene, it will contain
more information about the scene’s category. Scene categorization is therefore an inference based on
the recognition of this prominent (and informative) object. However, it is important to note that as
size information is also included in the local semantic concept model, all of the information in the
prominent object model is contained in the local semantic concept model. Therefore, the essential dif-
ference in the two models is in the relative importance of one object verses the importance of all
objects.

6.1. Method
Two independent observers (one author, and one naive observer) hand-segmented and labeled all

regions and objects in the 200 image database. The labeling was done using the online annotation tool
LabelMe (Russell, Torralba, Murphy, & Freeman, 2008). Example annotations are found in Fig. 9. There

Fig. 9. Examples of segmentations and annotations made using the LabelMe annotation tool, and used as the basis for the local
scene representation in Experiment 4.
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were a total of 199 uniquely labeled regions in the database. All of the labels were pared down to 16
basic and superordinant level region names by removing typos, misspellings, synonyms and subord-
inant-level concept names (for example “red sand” instead of “sand”). We used the following region
concepts for the local semantic concept model: sky, water, foliage, mountains, snow, rock, sand, animals,
hills, fog, clouds, grass, dirt, manmade objects, canyon and road. This list includes the nine semantic con-
cepts used by Vogel and Schiele (2007) as well as others that were needed to fully explain our natural
image database. In Appendix A.8, we report that the performance of this 16 concept model is not dif-
ferent from a model using the raw data (199 concepts), or a model using 50 basic-level region
concepts.

Each image’s list of regions (along with their image area) was used to train and test a naive Bayes
classifier using the same leave-one-out procedure as described in Experiment 3. As with the global
property classifier of Experiment 3 results are compared to the human psychophysical performance
of Experiment 2.

For the prominent object model, the naive Bayes classifier was not needed because the relevant
information could be calculated directly from the statistics of the LabelMe annotations. For each im-
age, we calculated the probability of the image being from each basic-level category based on the
identity of the scene’s largest object. For this analysis, we used the 50 local concept list (see Appendix
A.8) as it had the best balance between distinctiveness and representation of the object concepts.

For each image, we computed a 50 region by 8 category matrix of object predictability from the 199
remaining scenes where each entry (i,j) was the probability of the region (i) being in the basic-level
category (j). Taking the row representing the largest region in the test image, we selected the category
for maximum probability for that region. For example, if a scene’s largest region was sky, the proba-
bilities of the scene being from each of the eight categories are as follows: 0.20 desert; 0.14 field; 0.04
forest; 0.16 lake; 0.17 mountain; 0.15 ocean; 0.05 river; 0.09 waterfall. Therefore, the scene is most
likely a desert.

6.2. Results

A summary of the classification results of the two local region models, along with a comparison to
the global property model of Experiment 3, can be found in Table 5.

6.2.1. Local models’ performance: Percent correct and correlation to human basic-level category
performance

The local semantic concept model averaged an overall 60% correct categorizations (vs. 77% for the
global property classifier, Section 5.2.1), which was significantly lower than the percent correct of hu-
man meta-observers (77%, t(7) = —2.88, p < 0.05, also recall 86% for complete-observers). To ensure

Table 5
A summary of performance of local region-based models tested in Experiment 4 with the global property model of Experiment 3
Percent correct (%) By-category Item analysis Between-category confusion
correlation correlation correlation
Prominent object model 52 0.55 0.69 0.06
Local semantic concept model 60 0.64 0.69° 0.23
Global property model 77 0.88" 0.76" 0.77"

The local semantic concept model refers to a model in which a scene is represented as a co-occurrence vector of all labeled
regions and objects along with their relative sizes. The prominent object model refers to the predictability of the scene category
conditioned on the presence of its largest object. The by-category correlation (cf. Section 6.2.1 for the local models and Section
5.2.1 for global model) shows the extent to which the models are similar to the pattern of human correct performance rate by
category for the eight basic-level categories. The item analysis (Sections 6.2.2 and 5.2.2 for local and global models, respectively,
bins of 25) shows the extent to which the models tend to misclassify the same images as humans do. The between-category
confusion correlation (Sections 6.2.3 and 5.2.3 for local and global models, respectively) shows the extent to which the patterns
of confusability between pairs of basic-level categories for the models were similar to those of human observers.

" Indicates significant correlations (p < 0.05).
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that the local semantic concepts were not too general, we compared this performance to the perfor-
mance on a larger list of 50 basic-level region concepts, finding no significant performance difference
to the semantic concept model (t(398) < 1, see Appendix A.8 for details, including the percent of cor-
rect classifications per semantic category). The prominent object model performed well overall. The
overall percent correct for this model was 52% (chance being 12.5%), but still under the rate of human
observers (t(7) = —9.4, p < 0.0001).

To evaluate how the local models compared to human performance by category, we correlated
meta-observer correct performance and object models’ correct performance for the eight basic-level
categories (as in Section 5.2.1 and Fig. 5 for the global property model): none were significant
(r=0.64, p = 0.09, for the local semantic model, and r = 0.55, p = .16, for prominent object model).

These results suggest that the scene categories that are easy or hard for human observers to classify
at a short presentation time are not necessarily the same for the object models. In fact, the categories
field, forest and mountain are classified by all three models at human performance levels, whereas the
object models’ classifications drop for desert, lake, ocean and river. Indeed, field, forest and mountain are
environments that are mostly composed of one or two prominent regions or objects (e.g. grass for
field, trees for forest, and mountain for mountain), whereas other scene categories share more objects
between them, putting local models at a disadvantage.

6.2.2. Error analysis: Easy and difficult images

As we did in Experiment 3 (Section 5.2.2), we performed an item analysis to determine if the local
region models would have trouble classifying the same images that human observers do. This analysis
quantifies whether an error is made on an image, but not the type of error made.

Both the local semantic concept model and the prominent object model reflected the level of dif-
ficulty of the images for humans as well as the global property model did (for bins of 25, r=0.69 for
both object models, both correlations significant p < 0.001, see Table 5. Bins of 10 yielded higher coef-
ficients, r = 0.89 for local semantic concept model and r = 0.85 for the prominent object model). These
correlations indicate that both global and local representations have a tendency to perform well or
poorly on the same images. However, this analysis does not give information about the type of errors
made. In other words, the local models and human observers tend to misclassify the same images, but
do they misclassify these images as being the same category? We explore this issue below.

6.2.3. Qualitative error analysis: Distribution of error types

In order to evaluate further the types of errors made by the local models, we analyzed the extent to
which the distribution of errors made by the object models was similar to the distributions of false
alarms made by human observers. For instance, in the rapid scene categorization task (Experiment
2), humans often confused river and waterfall, as well as desert with field (Table A5). However, they
almost never mistake a forest for an ocean. Are the pairs of categories often confused by human observ-
ers also often confused by the local region models? As in Section 5.2.3, we compared the pairwise ba-
sic-level category confusions made by the local region models to the distribution of false alarms made
by the human observers for each pair of categories. For both local models, there was no significant
relation between their patterns of category confusability and those of the human observers: r=0.23
(p =.25) for the local semantic concept model, and r=0.06 (p =0.75) for the prominent object model
(the global property model gave r = 0.77 for comparison). This indicates that there is limited similarity
between the local models and human observers in terms of the pairs of categories confused, and sug-
gests that these local models do not capture the richness of the representation built by human observ-
ers in a 30 ms presentation time.

6.3. Discussion

The high performance of the global property model begs the question of whether any reasonably
rich and informative representation could predict human rapid scene categorization performance.

Here we have explored two distinct alternative hypotheses to the global property scene represen-
tation. In particular, our results suggest that a local, region-based approach, based on suggestions from
the literature does not have the same capacity to explain human rapid scene categorization as the glo-
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bal property model does. It is of note that the local semantic concept model represents one of the best-
case scenario for the local approach, in which the identities of all of the objects and regions in the
scene are known, as well as their relative sizes.

While the local semantic concept model shows relatively good percent correct performance at ba-
sic-level scene categorization (60%, chance being 12.5%), it does not have the fidelity to predict the
types of false alarms made by human observers in a rapid scene categorization task (cf. Table 5).
For instance, Fig. 10 shows example false alarms made by the global property classifier of Experiment

False alarms: global property classifier

“field” “forest”
(human - 63%) (human - 57%)

False alarms:local semantic concept classifier

: s,
“ocean” “field”
(human - 12%) (human - 0%)

Fig. 10. Examples of false alarms made by the global property classifier of Experiment 3 and the local semantic concept
classifier of Experiment 4. Underneath, we report the percent of human false alarms made on that image. The global property

classifier captures the majority of false alarms made by human observers while the local semantic concept classifier captures
less (see Table 5).
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3 with the local semantic concept model of Experiment 4. Strikingly, the top desert and river are clas-
sified by the global property classifier as being field and forest, respectively. This mirrors the pattern of
false alarms made to the same images by human observers in Experiment 2. However, the lake and
river shown at the bottom of Fig. 10 were classified as ocean and field, respectively, by the local
semantic concept model; errors that were not made often by the human observers in Experiment 2.
At first glance, it seems strange that such a prototypical river (bottom right of Fig. 10) would be clas-
sified as a field at all. However, as fields in our database have large amounts of sky, trees and rock
(similar to rivers), this image was classified as a field by the local semantic concept model.

The prominent object model, while having the lowest overall correct categorization performance of
the models, still performed substantially above chance. This is because some categories, such as field
and forest were very well categorized by this model. This makes intuitive sense, as typical prominent
objects for these categories were grass and trees, respectively, which were very diagnostic for these
categories. However, these categories which were easy for the model to classify had limited similarity
to the categories that were easy for the human observers to classify, which is why the by-category cor-
relation was modest. While the prominent object model had a tendency to correctly categorize the
same images as human observers, it could not predict the types of errors that the human observers
would make. For example, if water was the largest object in a scene, the prominent object model could
not distinguish whether the scene was a lake, ocean, river or waterfall because water is equally diag-
nostic for these categories.

Likewise, the local semantic concept model was able to correctly classify the majority of the images
in the database. This is because there is a considerable amount of redundancy in image categories that
allowed the model to learn that a scene with cliffs, water and sky is likely to be a waterfall while a
scene with sand, rock and sky is likely to be a desert. However, the pattern of correct category classi-
fication of this model showed only modest similarity to that of the observers. For example, field was
very well classified by the model while it was on average, one of the more difficult categories for the
human observers in the rapid categorization task. This is likely because the model was relying heavily
on the presence of objects such as grass or flowers that are unique to this category. Like the prominent
object model, the local semantic concept model tended to correctly classify the same images as human
observers, but could not predict the types of false alarms made by humans. In particular, categories
such as lake and river have very similar sets of objects (typical objects include sky, water, trees and
grass), so it was difficult for the local semantic concept model to distinguish between these categories,
even though human observers did not have such a difficulty.

In contrast, the global property model of Experiment 3 had higher correct classification perfor-
mance than the local models, and was very similar to human observers’ performance. Also in contrast
to the local models, its pattern of performance by category significantly correlated with that of the hu-
man observers’. Like both of the local models, it also tended to correctly classify the same images that
human observers did. However, unlike the local models, it has the power to predict the types of false
alarms made by the human observers. To go back to the lake and river example, the local models made
errors in these categories because the objects in them are very similar. However, the global property
model can distinguish between them because they have different layout and surface properties: lakes
are more open, and less transient, for example (see Fig. 3). To the human observers, few errors are
made between these categories, perhaps because the observers are using the structural differences be-
tween these categories to distinguish them.

Clearly, more sophisticated object models that incorporate structure and layout information should
be able to capture more of the essence of a natural scene (Grossberg & Huang, in press; Murphy, Torr-
alba, & Freeman, 2003). Our point here is that object models testing simple instantiations of valid
propositions from the visual cognition literature do not have the same explanatory power as our glo-
bal property model for predicting human rapid scene categorization performance.

Importantly, we do not mean to imply that local objects are regions are not represented in early
processing of the visual scene. Instead we have shown that the remarkable fidelity of a global property
representation for predicting human rapid scene categorization performance cannot be achieved with
any reasonably informative description of the visual scene.

While local region and object information most certainly make up an important part of a scene’s
identity, our results suggest that the representation formed by human observers after a very brief



M.R. Greene, A. Oliva/Cognitive Psychology 58 (2009) 137-176 163

glance at a scene is not dominated by local object information (see also Fei-Fei et al., 2007). Our results
suggest the possibility that our qualia of object perception in a brief glance might be based upon infer-
ence of these objects given global scene structure and schema activation.

7. General discussion

In this paper, we have shown that a global scene-centered approach to natural scene understanding
closely predicts human performance and errors in a rapid basic-level scene categorization task. This
approach uses a small vocabulary of global and ecologically relevant scene primitives that describe
the structural, constancy and functional aspects of scene surfaces without representing objects and
parts. Beyond the principle of recognizing the “forest before the trees” (Navon, 1977), here we propose
an operational definition of the notion of “globality” for natural scene recognition, and provide a novel
account of how human observers could identify a place as a “forest”, without first having to recognize
the “trees”.

Several independent analyses, on human performance alone (Experiments 1 and 2), and on human
performance compared to a classifier (Experiments 3 and 4), were undertaken to finely probe the rela-
tion between a global scene representation and human rapid natural scene categorization perfor-
mance. Although strict causation cannot be inferred from these correlational results alone, all
results taken together are suggestive of the view that a scene-centered approach can be used by hu-
man observers for basic-level scene categorization. Strengthening this view is the fact that perfor-
mance of a classifier representing the local objects and regions of the images (Experiment 4) does
not have the same explanatory power as the global property representation (Experiment 3) for pre-
dicting human performance and false alarms (Experiment 2).

We have shown that human performance at a rapid scene categorization task can be dramatically
influenced by varying the distractor set to contain more global property similarities to a target cate-
gory (cf. Fig. 4, Section 4.2.2). Moreover, the item analysis which calculates the probability of a false
alarm occurring to single distractor images was very well predicted from each distractor’s distance
from the target-category mean for a global property, suggesting that rapid image categorization per-
formance follows the statistical regularities of global properties’ distributions in basic-level categories.
Last, the relative confusability of basic-level categories (Section 4.2.3, Tables A5 and A6) to one an-
other is also well-explained by the basic-level categories’ similarity in global property space.

To determine how computationally sufficient the global properties are for explaining the human
rapid scene categorization data in Experiment 2, we compared a simple classifier to human perfor-
mance on several metrics (Experiment 3). First, the overall categorization performance of the classifier
was similar to humans’, and the relative performance of the classifier by category was also well-cor-
related with human observers.

However, similar levels of performance are not enough: if the global property representation is a
plausible human scene representation, then the classifier should also predict the false alarms made
by human observers. We have shown that image difficulty for the classifier is very similar to image
difficulty for human observers, and that the same qualitative errors are made by both (e.g. false alarm-
ing to a particular river image as a waterfall) the majority of the time (Section 5.2.3). Furthermore, we
have shown that when a global property is not available for use in categorization, either because it is
not explicitly represented (classifier), or because the distractors make it non-diagnostic of the target
category (humans), performance suffers similarly (Sections 5.2.4-5.2.5). Furthermore, we have shown
in Section 5.2.6 that the high fidelity of categorization performance in the global property model can
generalize beyond prototypical images. In particular, the level of agreement between the classifier and
human observers is not different from the agreement between the human observers. Lastly, the strik-
ing predictability of the global property model for human scene categorization performance is not
found in two local object models that we tested (Experiment 4).

It has been known that visual perception tends to proceed in a global-to-local manner (Navon,
1977), but for stimuli as complex as a natural scene, it is not obvious what the global level might
be. Computational models have shown that basic-level scene categories can emerge from a combina-
tion of global layout properties (Oliva & Torralba, 2001, 2002, 2006), or from a collection of regions
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(Fei-Fei & Perona, 2005; Grossberg & Huang, in press; Vogel & Schiele, 2007; Vogel, Schwaninger,
Wallraven, & Biilthoff, 2006) but no psychological foundation has yet been established between global
scene properties and basic-level scene categorization performance. This work has tried to make this
link. By grounding our search in the principles of environmental affordance (Gibson, 1979; Rosch,
1978), we found a collection of global properties that are sufficient to capture the essence of many nat-
ural scene categories.

Our result is also in the spirit of seminal scene understanding studies from the 1970s and 1980s.
Biederman and collaborators have shown that coherent scene context aided the search for an object
within the scene, even when the identity and location of the object were known in advance (Bieder-
man, 1972). Furthermore, lack of coherent spatial context seemed particularly disruptive on negative
trials where the object was not in the scene, but had a high probability of being in the scene (Bieder-
man, Glass, & Stacy, 1973). Together, this suggests that scene identity information may be accessed
before object identity information is complete. Biederman (1981) outlined three paths by which such
scene information could be computed: (1) a path through the recognition of a prominent object; (2) a
global path through scene-emergent features that were not defined at this time; (3) the spatial inte-
gration of a few context related objects.

Our results offer positive evidence for path 2 (the global path suggested by Navon, 1977, but
never operationalized) and non-conclusive evidence for path 1 (the prominent object). Path 3 sup-
poses that the co-occurrence of a few objects in a stereotypical spatial arrangement would be pre-
dictive of the scene category. The semi-localized local model of Vogel and Schiele (2007) along with
the studies of relation processing by Hummel and colleagues (e.g. Saiki & Hummel, 1998) has
started to find evidence for this path. However, there is also reason to believe that path 3 may
not be the only approach for capturing the type of representation built over a brief glance at a novel
scene. This view requires that several objects be segmented, recognized and relationally organized
for scene categorization to occur. However, it is still not clear that humans can segment, identify
and remember several objects in a scene at a glance. Potter, Staub, and O’ Connor (2004) demon-
strated that, in a memory test following an RSVP sequence of images, a large number of false alarms
were made to images that were conceptually similar to an image presented in the sequence, but did
not necessarily have the same objects and regions, suggesting that what is encoded and stored from
a brief glance at a scene is a more general description of the image than an exhaustive list of its
objects. This view is corroborated with the facts that human observers also make systematic errors
in remembering the location of objects from a briefly glimpsed display (Evans & Treisman, 2005),
and are relatively insensitive to changes in single objects in a scene (change blindness, Rensink,
O’Regan, & Clark, 1997; Simons, 2000).

A consequence of our global precedence finding could be that the perceptual entry-level for vi-
sual scenes is not the basic-level category, but rather an image’s global property descriptions, at a
superordinate level (Joubert et al., 2007; Oliva & Torralba, 2001, 2002). This idea is not necessarily
contradictory of the behavioral findings of Rosch and colleagues. We argue that the basic-level cat-
egory is the entry-level for communication about objects and places because it represents a com-
promise between within-category similarity and between-category distinctiveness. However,
under the constraints of a rapid categorization task, perhaps the initial scene representation would
benefit from processing distinctiveness first, making a superordinate description an ideal level, par-
ticularly if the visual features used to get this superordinate description do not require a segmen-
tation stage, known to be computationally more expensive than an holistic analysis (Oliva &
Torralba, 2001).

Finding the image-level features that mediate such rapid visual categorizations is a fascinating,
yet rather open question that is beyond the scope of the current work (cf. McCotter, Gosselin, Sow-
den, & Schyns, 2005). Indeed, previous work has shown that certain spatial layout properties, such
as openness and mean depth can be well-described from a set of low-level image features corre-
sponding to spatially localized second-order image statistics (Oliva & Torralba, 2001, 2002; Torral-
ba & Oliva, 2002, 2003). Some properties, such as temperature, might even be represented by
simpler images features, such as the color distribution. However, functional properties such as nav-
igability and concealment may be more complex to represent, as their spatial structures might not
co-vary in a simple way with first or second-order image statistics. For instance, if a scene is very
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open, it is open because it has a very salient horizon line somewhere near the vertical center, and
all scenes that are consistently ranked as highly open share this feature. A navigable scene however,
might be navigable because the scene is open and free of clutter, or it could be navigable because
it has a very obvious path through an otherwise dense environment. Therefore, image features of a
higher complexity might be needed to fully represent these global properties, a question that fu-
ture research will investigate.

A global scene-centered representation is a plausible coding of visual scenes in the brain and a
complementary approach to object-based scene analysis. This present work suggests that rapid
scene recognition can be performed by global scene-centered mechanisms and need not be built
on top of object recognition. Indeed, work in functional imaging has shown a dissociation between
brain areas that represent scenes (the parahippocampal place area, or PPA, Epstein & Kanwisher,
1998) and those that represent individual objects (Bar, 2004; Grill-Spector, Kourtzi, & Kanwisher,
2001). Furthermore, the PPA seems to be sensitive to holistic properties of the scene layout, but
not to its complexity in terms of quantity of objects (Epstein & Kanwisher, 1998). The neural inde-
pendence between scenes and object recognition mechanisms was recently strengthened by Goh,
Siong, Park, Gutchess, Hebrank and Chee (2004). They observed activation of different parahippo-
campal regions when pictures of scenes were processed alone compared to pictures containing a
prominent object, consistent within that scene. Steeves, Humphreys, Culham, Menon, Milner and
Goodale (2004) have shown that an individual with profound visual form agnosia could still iden-
tify pictures of real-world places from color and texture information only. These findings are con-
sistent with the hypothesis that whole scene recognition may be dissociated from object
identification.

What is the mechanism by which a scene-centered pathway could arise in the brain?
Although we are far from a definitive answer, an examination of the time course of visual pro-
cessing yields critical insights. Thorpe and colleagues (1996) have made a case that the speed of
high-level visual processing necessitates a single feed-forward wave of spikes through the ventral
visual system. Furthermore, biologically inspired models of this architecture yield high perfor-
mances in detection tasks (Delorme & Thorpe, 2003; Serre, Oliva, & Poggio, 2007). However, very
rapid feedback might also mediate this performance. Physiological evidence shows that there is
considerable overlap in time between spikes arriving in progressive areas of the ventral visual
stream (Schmolesky et al., 1998), suggesting that feedback from higher visual areas can feed back
to early visual areas to build a simple yet global initial scene representation. Furthermore, a com-
bined EEG/MEG and fMRI study has shown a V1 feedback signal as early as 140 ms after stimulus
presentation (Noesselt et al., 2002) furthering the idea that scene recognition may be mediated
through rapid feedback. Strikingly, there is evidence of the global pattern from a contextual cue-
ing display being processed 100 msec after stimulus presentation (Chaumon, Drouet, & Tallon-
Baudry, 2008). These results confer with behavioral evidence which suggest that global properties
such as concealment or naturalness are available for report with less exposure time than basic-le-
vel categories (Greene & Oliva, in preparation; Joubert, Fize, Rousselet, & Fabre-Thorpe, 2005; Jou-
bert et al., 2007; Kaplan, 1992). Although this does not necessarily imply that they are processed
first by the brain, it is consistent with the view that global properties are reasonable scene prim-
itives for basic-level categorization.

Emphasizing the importance of a scene-centered view does not imply that objects are not an
important part of rapid scene recognition. Surely, as objects can make up the identity of the scene
and are the entities acted on by agents in a scene, they are of critical importance for scene under-
standing with longer image exposures. However, it appears that objects might not necessarily be
the atoms of high-level recognition especially under degraded conditions of blur or at the very
beginning of visual analysis (Oliva & Schyns, 2000; Schyns & Oliva, 1994). But given longer image
exposures, objects become increasingly important in our representations of scenes during the
course of the first fixation (Fei-Fei et al., 2007; Gordon, 2004) and a framework that would com-
bine objects and their spatial relationships with global properties would capture more of the rich-
ness of scene identity.

In this paper, we have demonstrated that global property information is more diagnostic of natural
scene categories than local region and object information. A natural question is then what roles both
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types of information play in other types of environments, such as indoor scenes? Intuitively, the prom-
inent object model from Experiment 4 seems like it would do a good job at categorizing some indoor
categories such as bedrooms or living rooms because the largest object (bed or sofa) is not typically
found in other scene categories. However, it does not seem that all indoor categories are so strongly
object-driven. A corridor, for example, is unique among indoor scene categories as having a great deal
of perspective. A conference room and a dining room might also be confused by a prominent object
model as they both have prominent tables surrounded by chairs. Part of our ongoing effort is charac-
terizing the relative use of global and local diagnostic information for scene categorization for a great-
er variety of scene categories.

An extension of the present work that could indirectly probe the neural representation of visual
scenes is to measure if global properties are adaptable (Greene & Oliva, 2008). A ubiquitous property
of neural systems is that repeated presentation of a represented property leads to a temporary de-
crease in sensitivity to that property, a phenomenon known as adaptation. This phenomenon is seen
at all levels of visual processing for entities that seem to have dedicated processing, from basic prop-
erties such as color, motion, orientation and spatial frequency (for a review, see Wade & Verstraten,
2005) to complex features such as facial emotion and identity (Leopold, O'Toole, Vetter & Blanz,
2001; Webster, Kaping, Mizokami, & Duhamel, 2004). Furthermore, adapting to low-level image fea-
tures can modulate higher level perceptual judgments for surface glossiness (Motoyoshi, Nishida, Sha-
ran, & Adelson, 2007) or the naturalness of real-world scenes (Kaping, Tzvetanov, & Treue, 2007).

7.1. Concluding remarks

The present work was designed to operationalize the notion of globality in the domain of natural
real-world images. We have shown that global properties capture much of the variance in how real-
world scenes vary in structure, constancy and function, and are involved in the representation of nat-
ural scenes that allows rapid categorization.

All together, our results provide support for an initial scene-centered visual representation built on
conjunctions of global properties that explicitly represent scene function and spatial layout.
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Appendix A
A.1. Pilot experiment for determining global properties

In order to ensure that image properties and affordances stated in the literature are relevant to our
natural scene image database and participant population, we ran the following pilot experiment with
5 naive observers. Participants viewed each of the 200 natural landscape images, one at a time for one
second each. Observers were given the following instruction: “We are studying how people perceive
space in photographs. Describe the kinds of actions that you could do if you were in that scene at that
moment, from that viewpoint. You might also mention what you might not be able to do due to envi-
ronmental conditions”. Observers typed their answer in a free-response prompt, and were given
unlimited time.

Observers’ responses were tabulated by one author as to the broad environmental concepts they
contained. Table A1 summarizes these concepts (see caption for details). Recognizing the possibility
for experimental bias in this method, care was taken to be as conservative with tabulations as possi-
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Table A1
Mean mentions of scene properties per image in the scene description study (see Appendix A.1)
Concept Mean frequency mentions per image
Navigation 1.39 (5)
Exploration 0.26 (5)
Temperature 0.17 (5)
Movement 0.15 (5)
Space 0.14 (5)
Camouflage 0.12 (5)
Harvest 0.11 (5)
Rest 0.06 (4)
Water 0.06 (3)
Animal 0.03 (2)
Ruggedness 0.02 (2)

The number in parentheses indicates the number of observers who have mentioned the concept (out of five total observers).
Navigation refers to self-propelled land or water movement through the scene (e.g. walking, running, swimming, driving).
Exploration refers to examination or interaction with a particular object (e.g. look at, play with). Although this was mentioned by
all participants, it was not included as a global property because it refers to interactions with single objects, and not the entire
scene. Temperature contains references to the physical temperature of the environment (e.g. hot, cold, warm). Movement refers
to statements of the scene in change or anticipation of it changing (“wait for car”, “water is too fast to swim”). This is a similar
concept to transience in Experiments 1, 2 and 3. Space includes mentions of the size or physical geometry of the scene (openness,
perspective, mean depth). Camouflage contains references to either the human being able to hide in the scene or that something/
someone could be hidden in the scene (“hide in trees”, “watch for birds”). This is a similar concept to concealment from
Experiments 1, 2 and 3. Harvest contains references to taking something from the environment (e.g. picking flowers, hunting
and fishing). Water refers to the presence of, or search for water. Rest contains repose words such as “sit” or “lie down”. Animal
contains references to animals that are either present in the scene or could potentially come into the scene. Ruggedness contains
references to aspects of the environment that make navigation treacherous.

ble. The descriptors given are similar to those found in other studies of environmental interaction
(Appelton, 1975; Kaplan, 1992), and of environmental spatial layout (Oliva & Torralba, 2001). All of
the global properties used in the subsequent experiments (openness, navigability, mean depth, conceal-
ment/camouflage, perspective, transience/movement, and temperature) were conceptually mentioned or
described by all participants.

Openness Expansion Mean depth
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Fig. A1. The figure shows the mean rank of each of the 200 scene image, in their respective semantic category, along each of the
seven global properties. These are from the ranking data from Experiment 1. In all basic-level categories, there is a considerable
spread of image rankings, indicating that the eight basic-level categories used in Experiments 1, 2, 3 and 4 do not cluster along
single global properties. Abbreviations of the basic-level categories correspond to: waterfall, river, ocean, mountain, lake, forest,
field and desert.
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Table A2
Correlations between pairs of global properties (image by image) from the human ranking data of Experiment 1
Openness Expansion Mean depth Temperature Transience Concealment Navigability
Openness ) .
Expansion 0.75 .
Mean depth 0.90 0.70 .
Temperature 0.35 0.29 0.19 .
Transience -0.22 -0.22 —0.34 -0.13
Concealment -0.52 -0.24 -0.43 -0.17 —0.06 .
Navigability 0.53 0.64 0.40 0.46 -0.44 0.13

Correlations that are statistically significant are shown in bold.

A.2. Global property space

In the ranking task of Experiment 1, there was considerable spread in the ranking values for each of
the basic-level categories (waterfall, river, ocean, mountain, lake, forest, field and desert) along each
global property (see Table 1). Fig. A1 shows every image’s rank for each global property, broken down
by basic-level category (see Section 3.1).

Table A2 shows the correlations between the images’ ranking along one global property to the
images’ ranking along each other global property, from Experiment 1. Correlations between image
rankings were computed for each pair of global properties in the database.

It is of note that these correlations are more a reflection of the landscape images in the natural im-
age database we used, and less a statement about the similarity of the property concepts. For example,
in this database openness and mean depth are highly correlated. However, previous work has shown
that for a larger and more diverse database of real-world scenes, this relation is much less strong (Oli-
va & Torralba, 2002).

While the global properties are not all statistically independent with each other (Table A2), each
property gives unique information about the scene images. For example, while all open places also
have large mean depth, not all large depth pictures are necessarily open (see Fig. A2A). Likewise, places
that are easily navigable might or might not be have perspective (see Fig. A2B), and two very closed
places such as forests can have different degree of expansion (see Fig. A2C). It is of note that conceal-
ment and navigability are not correlated with one another (r = 0.13). This is because it is the size and
distribution of the obstacles in a scene that matter for estimating these properties in a given space, and
not merely the presence of obstacles. For example, a very dense forest of thin trees does not provide
good cover for a human (low navigability and low concealment), and a forest with a clear path through
it would rank highly for both navigability and concealment.

To further test the structure and dimensionality of the ranking data of Experiment 1, we employed
classical multi-dimensional scaling (MDS) from the Euclidean distance matrix of images along the se-
ven global progerties. The first three dimensions of the solution are plotted in Fig. A3a. The eigen-
values of the y y’ transformation matrix are plotted in Fig. A3b. Unfortunately, there is no objective
test of MDS dimensionality. A “scree” or elbow test is typically employed to test the underlying
dimensionality of an MDS solution. The lack of an obvious elbow as shown in Fig. A3b suggests that
all seven dimensions, although correlated, contribute to the scene category representation.

>

Fig. A2. (a) A scatterplot of the rankings of the 200 natural scenes along mean depth and openness (from Experiment 1) shows
that although there is a strong correlation between these properties in this particular database, these properties represent
distinct spatial concepts. For example, images with large depth, can either be very open, with an infinite horizon like the picture
of the canyon, or moderately closed such as the mountainous landscape scene, where the horizon is bounded by a peak. (b) A
scatterplot showing all image ranks along the navigability and expansion dimensions. The two images shown are perceived as
having a high degree of navigability, however they have a different linear perspective. (c) A scatterplot between openness and
expansion dimensions, illustrated the fact that open environments may have different degree of perspective. Each dot in the
scatterplot represents the mean rank of one image, averaged over at least 10 observers.
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What are the MDS dimensions representing? Table A3 shows that significant correlations exist be-
tween all MDS dimensions and all global properties. The MDS dimensions show interesting combina-
tions of global properties: for instance, dimension 1 is mainly representing the structural global
properties, and dimension 5 opposes concealment and navigability.

A.3. Norming experiment for determining category prototypes

A.3.1. Method

The prototypicality ranking on 500 images was done in two stages: the first stage to determine
which image and category pairs to query in a second stage, prototypicality ranks for each image
was queried for the relevant semantic categories only. The first stage was designed to quickly elimi-
nate semantic categories that a given image could not be identified as: for instance, it does not make
sense to ask how prototypical a dense forest scene is of a desert or ocean. These less-sensical judgments
were not queried in stage 2.

In stage 1, three naive observers viewed the 500 images eight times each, in random order, and
indicated with a “yes” or “no” whether the image could be a member of the basic-level category name
written above it. Observers were told to respond “yes” if they were in doubt. Images were presented
on a computer monitor for one second each, and were not masked. Any image-category pair that re-
ceived a “yes” response from at least one of these three observers was included in the second phase of
the ranking experiment. While all of the 500 images were indicated to be potential prototypes of at
least one category, no image could be a potential prototype for all categories. The mode number of
‘“‘yes” responses per image was 2.

In the second phase, 10 new naive observers viewed these image-category pairs in random order and
indicated how prototypical the image was for the category, on a 5-point scale (“1” meaning “not typical”
and “5” meant “highly typical”). Each image was viewed for one second, and was not masked.

A.3.2. Results

Every image is represented by the 10 ranks that it received in each category it was queried on in
stage 2. The Spearman’s rank-order correlation for each of the participant to the mean of the remain-
ing participants was high (r; = 0.73), indicating a high degree of agreement between observers. This
means that most participants have a similar representation of semantic category structure and bound-
aries between categories. Our results are very similar to the human ranking data and high correlation
between observers from Vogel and Schiele (2007)'s article, which has also explored prototypicality
rankings for categories in a natural scene database.

For Experiments 1-4, we selected 200 scene exemplars that had a high prototypicality rank for one
of the scene categories. These 200 typical scenes had both the highest mean rankings for a given
semantic category, and either a very low ranking or no query at all on any of the other images cate-
gories. The mean prototypicality ranking for the 200 images used in Experiments 1-4 was 4.59 out of
5.

The remaining 300 images (with a mean prototypicality of 3.08 out of 5) were used in Experiment 3
(Section 5.2.7) to further evaluate the categorization provided by the global property classifier.

AA4. Supplementary experiment: Speeded classification of global properties

In order to compare the time-unlimited rankings to the speeded categorization task of Experiment
2, it is necessary to show that global properties can be perceived rapidly by human observers.

In a supplementary experiment, 20 individuals (8 male) completed a speeded binary judgment on
global properties. The speeded classification was performed in a blocked design. At the beginning of
the block, the participant would be given a global property pole (i.e. “hot” or “large depth”). Images
were presented one at a time for 20, 40, 60 or 80 milliseconds (randomized within the block) followed
by a 1/f noise mask. Participants were instructed to respond as quickly and accurately as possible with
a key press (“a” for yes, “1” for no) as to whether each image matched the global property pole for the
category given (e.g. is this image a “cold” scene?). As many images had intermediate values for any
given global property, no feedback was given.
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Fig. A3. The classical multi-dimensional scaling (MDS) solution for the global property rankings from Experiment 1. (a) A
scatter plot of each of the 200 scenes in the database projected onto the first three MDS dimensions. Different semantic
categories are shown in different colors. (b) Scree test showing eigenvalues for the y y’ matrix of the MDS: there is no obvious
elbow in these values indicating that all global properties have a unique (if unequal) contribution to the scene representation.

Table A3

Significant correlations between dimensions of classical MDS solution and the global property rankings of Experiment 1
MDS dimension Correlated properties Correlation coefficient
1 Openness 0.93

1 Mean depth 0.88

1 Expansion 0.82

1 Navigability 0.73

2 Transience 0.76

3 Temperature 0.78

4 Concealment 0.59

5 Navigability 0.39

5 Concealment 0.37

5 Temperature 0.30

6 Expansion 0.37

7 Openness 0.17

7 Mean depth 0.17

Here, we computed the average “yes” response from the 20 observers for each image, giving a
proxy for how much that image resembled the global property pole. We correlated these values for
the ranking on those images from Experiment 1. The mean correlation of the speeded classification
to the hierarchical rankings was 0.82, ranging from 0.70 for concealment to 0.96 for temperature
(all significant). There were no significant differences in the correlation coefficients for the four differ-
ent presentation times (t(3) < 1) indicating even a 20 ms presentation is sufficient to estimate these
global properties, and that global property rankings given from the time-unlimited hierarchical rank-
ings are comparable to what participants can do in a time limited situation.

Furthermore, for each property, we took as ground truth the top and bottom 5% of ranked images
and calculated the accuracy of making global property judgments on these images with a 20 ms
masked presentation time. We found extremely high performance: the mean for all global properties
was 94.1%, ranging from 92.5% for concealment to 98% for transience.

A.5. Meta-observer analysis of Experiment 2

As the entire experimental design of Experiment 2 contained 50 images x 112 blocks for a total of
5600 trials, each individual participant in the meta-observer group completed only part of the design.
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Each participant completed at least 8 blocks (400 trials) of this experiment (each block taking about
2.5 min to complete). In a set of 8 blocks, each basic-level category was represented as a target in this
session, and the distractor set was rotated such that no distractor set would repeat itself for any indi-
vidual. The entire design was completed by eight meta-observers. This ensured that the 25 target
items per category were not over-learned by participants.

As the critical analyses for this work are on the image items, this approach is generally justified. In
addition, we took the following additional precautions. In order to report meta-observer results, we
converted individual participant performances in each block into z-scores so that performance on
any block is relative to the overall performance of the individual observer. For all statistics reported,
we used the more conservative between-observer methods. The agreements between meta-observers
were computed by averaging correlations between each meta-observer to the mean of the remaining
meta-observers, and ranged from 0.60 to 0.78 (mean 0.70).

A.6. Asymmetries in between-category false alarms

For most category pairs, the false alarm rates were somewhat asymmetrical: the false alarm rate for
category X among category Y was not the same as the false alarm rate for category Y among category
X. The amount of asymmetry was never more than 10% (lake), and appears to reflect more noise in the
data than a conceptual difference in the similarity between categories (cf. Tversky, 1977). The small
asymmetries could not be well-explained by within-category variance of the ranking data, or by the
number of unique labeled regions for the category.

In performing the correlations between the Euclidean distances and false alarm rates, we average
all X-among-Y and Y-among-X pairs. The Euclidean distance D between category prototype p and cat-
egory prototype q was calculated as

where i ranges over the seven global properties. Table A4 shows the distances between category pro-
totypes in the global property space.

These distances are related to the false alarms given by human observers in Experiment 2, shown in
Table A5 (a is from the eight meta-observers, and b is from the complete-observer group).

The confusion matrix of the classifier from Experiment 3 shown in Table A6.

A.7. Classifier assumptions
Here, we are assuming that the distributions of global property rankings are Gaussian. To verify the

validity of this assumption, we performed a Kolmogorov-Smirnov test on the rankings of each prop-
erty. All properties were found to be significantly Gaussian.

Table A4
The Euclidean distance between basic-level categories in global property space of Experiment 1
Desert Field Forest Lake Mountain Ocean River Waterfall
Desert : .
Field 0.34 .
Forest 0.90 0.94 .
Lake 0.51 0.42 0.77 .
Mountain 0.73 0.65 0.73 0.40 .
Ocean 0.64 0.58 0.91 0.32 0.67
River 0.97 0.96 0.56 0.62 0.71 0.61
Waterfall 1.05 1.08 0.73 0.72 0.85 0.65 0.23

o
Larger values indicate more differences between two categories. The diagonal (null distance) is indicated with .
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Table A5
Distribution of human false alarms made between basic-level categories in Experiment 2

Desert Field Forest Lake Mountain Ocean River Waterfall

(a) Meta-observer false alarm distribution

Desert .

Field 0.07 N

Forest 0.02 0.03 .

Lake 0.04 0.04 0.02 .

Mountain 0.04 0.05 0.02 0.06 .

Ocean 0.03 0.05 0.02 0.05 0.03 .

River 0.02 0.04 0.03 0.02 0.04 0.07 .
Waterfall 0.01 0.01 0.02 0.02 0.03 0.03 0.07

(b) Complete-obseryer false alarm distribution

Desert .

Field 0.11 .

Forest 0.03 0.03 .

Lake 0.01 0.05 0.01 B

Mountain 0.01 0.04 0.02 0.05 .

Ocean 0.02 0.04 0.01 0.11 0.04 .

River 0.01 0.02 0.02 0.02 0.04 0.09 .
Waterfall 0.01 0.01 0.03 0.02 0.03 0.05 0.14

The diagonal (of value zero) is indicated with *.

Table A6
Distribution of the proportion of false alarms made between basic-level categories by the global property classifier used in
Experiment 3

Desert Field Forest Lake Mountain Ocean River Waterfall
Desert i
Field 0.10 .
Forest 0 0 .
Lake 0.02 0.08 0 .
Mountain 0 0.06 0.04 0.10 .
Ocean 0 0.08 0 0.02 0
River 0 0 0.02 0 0.06 0.06 .
Waterfall 0 0 0 0 0 0.10 0.26

The diagonal (of value zero) is indicated with *.

The naive Bayes classifier is naive in that it makes a strong independence assumption about the
properties. In other words, it does not take covariance between properties into account. Although
the strong independence assumption does not hold in a strict sense for our data given the correlations
existing between properties (see Appendix A.2), we compared the naive Bayes classifier to a linear dis-
criminant classifier, which computes full covariance between properties, for all analyses reported in
this paper. We found that the overall performance of both classifiers to not differ significantly
(¢(14)< 1, p=0.664), and that the output of both classifiers to be very nearly identical (r=0.97,
p <0.0001). We are therefore reporting all subsequent data from the naive Bayes classifier only.

A.8. Details on local classifiers from Experiment 4

The raw LabelMe annotations for our data included several typos, misspellings, synonyms and sub-
ordinant-level category terms (such as “red sand” or “man bending over”). The 16 semantic concepts
were: sky, water, foliage, mountains, ice/snow, rock, sand, animals, hills, fog/mist, clouds, grass, dirt, man-
made objects, canyon and road. These include the nine semantic concepts used by Vogel and Schiele
(2007) as well as others that were needed to fully explain our database.

In order to ensure that the 16 item list was not too general, we compared this model to a model
that represented the basic-level names of regions. The following are the basic-level object and region
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names decided upon for this data: bird, branch, bridge, buildings, bush, cactus, canyon, car, cliff, cloud,
cow, dirt, dock, fence, flowers, fog, glacier, grass, ground, hill, horse, house, ice, leaves, moon, moss, moun-
tain, mud, path, pebbles, person, plateau, raft, railroad tracks, rainbow, road, rock, root, sand, sheep, sign,
sky, snow, telephone pole, tree, trees, trunk, valley, water, weeds. We found no significant differences be-
tween the performance of the 16 region semantic concept model and the 50 item semantic
concept model. Furthermore, to ensure that our abstractions from the raw data were not leaving
out critical evidence that could be used for classification, we also compared these to the raw annota-
tion data, and again found no significant differences in the overall performance of these models
(¢(398) < 1).

The percent of images correctly classified for the local semantic concept model were desert: 68%,
field: 84%, forest: 80%, lake: 16%, mountain: 84%, ocean: 48%, river: 16% and waterfall: 84%. For the
prominent object model, these were desert: 60%, field: 84%, forest: 92%, lake: 24%, mountain: 80%,
ocean: 12%, river: 20% and waterfall: 44%.
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