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ABSTRACT—What information is available from a brief

glance at a novel scene? Although previous efforts to an-

swer this question have focused on scene categorization or

object detection, real-world scenes contain a wealth of

information whose perceptual availability has yet to be

explored. We compared image exposure thresholds in

several tasks involving basic-level categorization or glo-

bal-property classification. All thresholds were remark-

ably short: Observers achieved 75%-correct performance

with presentations ranging from 19 to 67 ms, reaching

maximum performance at about 100 ms. Global-property

categorization was performed with significantly less pre-

sentation time than basic-level categorization, which sug-

gests that there exists a time during early visual processing

when a scene may be classified as, for example, a large

space or navigable, but not yet as a mountain or lake.

Comparing the relative availability of visual informa-

tion reveals bottlenecks in the accumulation of meaning.

Understanding these bottlenecks provides critical insight

into the computations underlying rapid visual under-

standing.

Catching meaning at a glance is a survival instinct, and a

uniquely human talent that movie producers manipulate to

their advantage when making trailers: By mixing snapshots of

meaningful scenes in a rapid sequence, they can convey in a few

seconds an evocative story from unrelated pictures of people,

events, and places. In the laboratory, now-classic studies have

shown that novel pictures can be identified in a 10-Hz sequence,

although they are quickly forgotten when new images come into

view (Intraub, 1981; Potter, 1975; Potter & Levy, 1969). Al-

though several studies have investigated the availability of vi-

sual features over the course of a glance, in the study reported

here

we investigated the early perceptual availability of a number of

semantic features used in scene classification. What types of

meaningful information can human observers perceive from the

briefest glances at images of novel scenes?

A typical scene fixation of 275 to 300 ms (Henderson, 2003;

Rayner, 1998) is often sufficient to understand the gist of an

image, namely, its semantic topic (e.g., ‘‘birthday party’’; In-

traub, 1981; Potter, 1975; Tatler, Gilchrist, & Risted, 2003). It

takes slightly more exposure to recognize small objects in the

scene (Fei-Fei, Iyer, Koch, & Perona, 2007) or to report their

locations and spatial relations (Evans & Treisman, 2005; Tatler

et al., 2003).

There is also evidence that observers can accomplish so-

phisticated scene analysis after viewing a novel scene for a

single monitor refresh (10–40 ms) without masking. With such a

brief exposure, observers can detect how pleasant a scene is

(Kaplan, 1992) or whether it is natural or urban (Joubert,

Rousselet, Fize, & Fabre-Thorpe, 2007); they can also deter-

mine the basic- or superordinate-level categories of a scene

(Oliva & Schyns, 2000; Rousselet, Joubert, & Fabre-Thorpe,

2005) or detect the presence of a large object (Thorpe, Fize, &

Marlot, 1996; Van Rullen & Thorpe, 2001). Although the ex-

traordinarily high level of performance in these studies may be

partially mediated by persistence in iconic memory, high per-

formance is seen on similar tasks using masking paradigms

(Bacon-Mace, Mace, Fabre-Thorpe, & Thorpe, 2005; Fei-Fei

et al., 2007; Greene & Oliva, 2009; Grill-Spector & Kanwisher,

2005; Maljkovic & Martini, 2005).

Although many studies of natural scene understanding have

focused on basic-level categorization or object identification,

real-world scenes contain a wealth of structural and functional

information whose time course of perceptual availability has not

yet been determined. For example, determining how navigable a

place is or whether it affords concealment is a perceptual de-

cision with high survival value (Kaplan, 1992). Similarly, how

the surfaces in a scene extend in space and change over time

may influence how observers would behave in the scene.

Properties of spatial layout, such as an environment’s mean

depth and openness, also influence its affordances (Oliva &
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Torralba, 2001). One can run in an open field, but not in a small

and enclosed cave. Some materials of natural environments have

a high transience, so that the scene changes very rapidly from

one glance to the next (e.g., a rushing waterfall or a windy, sand-

covered beach), whereas other surfaces (e.g., cliff rocks) have

low transience, changing mostly in geological time. Similarly,

material properties of surfaces, along with the interplay of at-

mospheric elements (e.g., water, wind, heat), give a place a

particular physical temperature, another global property of the

natural environment that strongly influences observers’ behav-

ior. All of these properties (and certainly more) combine in

forming the understanding of a scene, much as recognition of a

person depends on his or her gender, race, and facial expression,

or recognition of an object depends on its shape, material, or

position.

In the present study, we established perceptual benchmarks of

early scene understanding by estimating the image exposure

thresholds needed to perform two types of tasks: basic-level

scene categorization (identifying an image as an ocean, a

mountain, etc.) and global-property categorization (classifying

spatial and functional properties of a scene, such as whether it is

a hot place or a large environment). Different theories suggest

different predictions for the results. Prototype theorists might

predict that basic-level categories should be available first, as

the basic level is privileged in object-naming experiments (e.g.,

Rosch, 1978). However, formal and experimental work has

shown that global-property information is highly useful for ba-

sic-level scene categorization (Greene & Oliva, 2009; Oliva &

Torralba, 2001), which suggests that global properties might

have an early advantage. However, recent work examining the

perceptual availability of object information at different levels

of categorization showed that although subordinate-level cate-

gorizations required more image exposure than basic-level

categorizations, knowing what an object was at the basic level

did not require more image exposure than knowing that an ob-

ject (vs. noise) was present (Grill-Spector & Kanwisher, 2005).

This latter finding indicates that there may be no substantial

threshold differences between the two types of tasks we exam-

ined.

In psychophysics, staircase methods have been used to de-

termine human perceptual abilities efficiently (Klein, 2001). We

measured presentation-duration thresholds to determine per-

ceptual benchmarks for both global-property classification and

basic-level categorization.

METHOD

Participants

Twenty participants (8 males, 12 females; ages 18–35 years)

completed the psychophysical threshold experiment. They all

had normal or corrected-to-normal vision and provided written

informed consent. They received $10 for the 1-hr study.

Stimuli

The stimuli used in this experiment were 548 full-color photo-

graphs of natural landscapes (see Fig. 1) selected from a large

scene database (Greene & Oliva, 2009; Oliva & Torralba, 2001).

The images measured 256 � 256 pixels.

To compare performance in the tasks, it was necessary to have

normative rankings of the images’ prototypicality as regards

basic-level categories and global properties. Prototypicality

regarding basic-level categories was assessed in a previous

study (Greene & Oliva, 2009): Using a scale from 1 (atypical) to

5 (highly prototypical), 10 naive observers ranked 500 scenes in

terms of how typical they were for each of several different basic-

level category labels. For each basic-level category, we selected

at least 25 images with a mean rank of 4 or higher. To obtain

additional exemplars for each category, we visually matched the

ranked prototypes with images from a database of approximately

10,000 natural landscapes. For basic-level categorization, we

used prototypical scenes from seven natural landscape catego-

ries (desert, field, forest, lake, mountain, ocean, and river). In

each block of trials, 50 images were from a single target category

(e.g., forest), and 50 images were randomly selected from all the

other categories (selection was constrained so that roughly equal

numbers of images were taken from these categories).

For the global-property tasks, we used images that had been

ranked as poles for one of seven global properties (concealment,

mean depth, naturalness, navigability, openness, transience, and

temperature; see Greene & Oliva, 2009, and Table 1 for de-

scriptions). The same 500 natural scenes were ranked along

each of the global properties (except naturalness) by observers

who performed a hierarchical grouping task (at least 10 ob-

servers per property), organizing groups of 100 images at a time

from lowest to greatest degree of a property (e.g., in the case of

mean depth, ranking the images from the most close-up to the

farthest view). Images with ranks within the first (< 25%) or last

(> 75%) quartiles for a given property were considered typical

poles for that property and were used in the current experiment.

For the naturalness task, the target images were sampled from

this pool of natural images, and urban images were added to

serve as distractors. For global-property classification, each

block contained 50 images from the high pole of a property

(targets) and 50 images from the low pole of the same property

(distractors).

As far as possible, test images for basic-level categorization

and global-property classification were drawn from the same

population of pictures. About half of all the images served as

both targets and distractors (in different blocks). This helped to

ensure that image-level differences were balanced across the

experiment.

To produce reliable perceptual benchmarks, it is necessary to

effectively limit additional sensory processing following image

presentation. To this end, we used a dynamic masking paradigm

(Bacon-Mace et al., 2005) consisting of rapid serial visual

presentation of a sequence of mask images. The use of multiple
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mask images minimizes interactions between the visual features

of target images and masks, ensuring a more complete masking

of image features.

Mask images (see Fig. 2) were synthesized images created

from the test images, using a texture-synthesis algorithm de-

signed by Portilla and Simoncelli (2000). We used the Matlab

code provided on their Web site (http://www.cns.nyu.edu/

�eero/texture/), enhancing it to include the color distribution of

the model input image. The texture-synthesis algorithm uses a

natural image as input, then extracts a collection of statistics

from multiscale, multi-orientation filter outputs applied to the

image, and finally coerces noise to have the same statistics. This

method creates a nonmeaningful image that conserves marginal

and first-order statistics, as well as higher-order statistics (cross-

scale phase statistics, magnitude correlation and autocorrela-

tion), while discarding object and spatial layout information.

Power spectrum slopes for natural images and their masks were

not significantly different (prep 5 .76).

Design and Procedure

Participants sat in a dark room about 40 cm away from a 21-in.

CRT monitor (100-Hz refresh rate). Stimuli on the screen sub-

tended 71 � 71 of visual angle. Each participant completed

Mean DepthLow High Low High

Low HighLow HighNavigability Transience

Openness

Fig. 1. Example images from the low and high poles of four global properties examined in this experiment. These images also illustrate the basic-
level categories used in the experiment (river, mountain, field, and field, from left to right in the top row; forest, forest, desert, and lake, from
left to right in the bottom row).

TABLE 1

Descriptions of the Global Properties, as Presented to Participants in the Experiment

Global property Target description Nontarget description

Concealment The scene contains many accessible hiding spots, and

there may be hidden objects in the scene.

If standing in the scene, one would be easily seen.

Mean depth The scene takes up kilometers of space. The scene takes up less than a few meters of space.

Naturalness The scene is a natural environment. The scene is a man-made, urban environment.

Navigability The scene contains a very obvious path that is free of

obstacles.

The scene contains many obstacles or difficult terrain.

Openness The scene has a clear horizon line with few obstacles. The scene is closed, with no discernible horizon line.

Temperature The scene environment depicted is a hot place. The scene environment depicted is a cold place.

Transience One would see motion in a video made from this scene. The scene is not changing, except for patterns of

daylight.
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seven 100-image blocks of basic-level categorization (one block

for each target category) and seven 100-image blocks of global-

property classification (one block for each property). The order

of blocks was randomized and counterbalanced across partici-

pants. For each block, participants performed a yes/no forced-

choice task; they were instructed to indicate as quickly and

accurately as possible whether each briefly presented image was

of the target category or global-property pole.

During each block, a linear 3-up/1-down staircase was em-

ployed. The first image in each block was shown for 50 ms;

subsequent presentation times were determined by the accuracy

of the observer’s previous response, increasing by 10 ms (to a

ceiling of 200 ms) if the response was incorrect and decreasing

by 30 ms (to a floor of 10 ms) if the response was correct. With

this procedure, performance converges at 75% correct (Kaern-

bach, 1990).

At the beginning of each experimental block, an instruction

page appeared on the screen, describing the task (i.e., the basic-

level category or property pole to be detected; see Table 1) and

giving a pictorial example of a target and a nontarget. Figure 2 is

a pictorial representation of a trial. Each trial commenced with a

fixation point for 250 ms, followed by a test image. As noted, the

presentation time of the test image varied (10–200 ms, as de-

termined by the staircase method). The test image was imme-

diately followed by a sequence of four randomly drawn mask

images, presented for 20 ms each, for a total of 80 ms. After the

mask sequence, participants were to indicate as quickly and

accurately as possible whether or not the test image was the

target. Visual feedback was provided for incorrectly classified

images (the word ‘‘Error’’ was displayed for 300 ms following the

response). Participants were first given a practice block of 20

trials to get used to the staircase procedure. The task for the

practice block was to categorize scenes as indoor or outdoor, a

classification not used in the main experiment. This experiment

was run using Matlab and the Psychophysics Toolbox (Brainard,

1997; Pelli, 1997).

RESULTS

For all blocks, the image presentation threshold was the pre-

sentation duration required for a participant to achieve 75%

accuracy on the task. For some participants, not all blocks

yielded a stable threshold. Because of the adaptive nature of the

staircasing algorithm, very poor performance at the beginning of

a block could lead to a considerable number of trials at the 200-

ms image duration (the ceiling duration), resulting in artificially

high final threshold calculations. For all analyses reported, we

excluded data from blocks in which more than 10% of trials were

spent at the maximum duration of 200 ms. Altogether these trials

constituted only 5% of the data, and were evenly distributed

between global-property and basic-level classification, t(13) <

1. We discuss here two processing benchmarks: (a) the upper

bound of the exposure duration necessary for a given categori-

zation block (the maximum image duration for each participant

during that block) and (b) the duration at which participants

achieved 75%-correct performance (used to compare the time

needed for equivalent performance across blocks).

Test Image
Variable Duration

Mask Images
20 Ms Each

Fig. 2. Illustration of an experimental trial. The presentation duration of each test image was de-
termined using a linear 3-up/1-down staircase, with the first trial of each block presented for 50 ms.
Test images were dynamically masked using four colored textures.
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To ensure that the tasks were equally difficult, we compared

the maximum image exposures needed. As image presentation

times were controlled adaptively in the staircase procedure, the

longest presentation time for a participant corresponds to the

duration at which that participant made no classification errors

(recall that errors resulted in increased subsequent presentation

times). If the global-property and category tasks were of com-

parable difficulty, we would expect them to have similar maxi-

mum durations. Indeed, the mean maximum duration was 102

ms for the global-property tasks and 97 ms for the category tasks,

t(19)< 1 (see Table 2). This result indicates that the two types of

tasks were of similar difficulty.

A classic method for estimating thresholds from up-down

staircases such as ours is to take the mode stimulus value for a

participant (Cornsweet, 1962; Levitt, 1971). The logic in this

experiment is simple: Because presentation duration was re-

duced by 30 ms following a correct response and increased by 10

ms following an incorrect response, participants converged on

75%-correct performance over the course of a block (Kaern-

bach, 1990), viewing more trials around the perceptual

threshold than above or below it.

As estimation with the mode is a rather coarse method, we also

estimated thresholds by fitting a Weibull function to the accu-

racy data for each participant for each block (using the maxi-

mum likelihood procedure) and solving for the threshold. This

function typically provides very good fits to psychometric data

(Klein, 2001). Figure 3 shows the Weibull fits and histograms of

presentation times for 1 participant for a global-property block

and a category block.

The thresholds reported in Table 2 are the averages of the

estimates obtained using the two methods. The presentation-

time thresholds for all 14 blocks were remarkably short: All were

well under 100 ms; values ranged from 19 ms (naturalness) to 67

ms (river).

We compared the threshold values for the global-property

blocks with the threshold values for the categorization blocks

and found that the mean threshold (based on the average of the

Weibull fit and mode value) was significantly lower for global-

property classification (34 ms) than for basic-level categoriza-

tion (50 ms), t(19) 5�7.94, prep 5 .99; the difference was also

significant when we used the Weibull fits only, t(19) 5 7.38,

prep > .99, and when we used the modes only, t(19) 5 3.51,

prep 5 .98. Note that to compare performance for different fea-

tures, it is necessary to ensure that there were equivalently

difficult distractor images. On the one hand, a distractor that

differed from the target by only 1 pixel would produce extremely

large presentation-time thresholds (if observers could perform

the task at all). On the other hand, distinguishing targets from

white-noise distractors should result in ceiling performance. In

our tasks, distractors were always prototypically different from

targets. That is, in the global-property blocks, the distractors

represented the opposite pole of the queried property, and both

targets and distractors came from several basic-level categories.

In the categorization blocks, the distractors were prototypes of a

variety of nontarget categories and were chosen so as to show the

greatest variety of category prototypes. In this way, targets and

distractors were chosen, to the extent possible, to vary only in the

attribute being tested. Recall that ceiling performance was

reached at similar presentation durations in the global-property

and category tasks, which indicates that although performance

had an early advantage in global-property blocks, this advantage

was not due to the blocks of basic-level categorization being

harder than the global-property blocks.

Figure 4a shows the distributions of participants’ presentation-

duration thresholds for both types of tasks, using a Gaussian fit.

The distributions of participants’ thresholds in categorization

blocks were rather homogeneous in terms of both means and

variances (see Fig. 4b). In contrast, the distributions of thresh-

olds in global-property blocks (Fig. 4c) were more heteroge-

neous, with some coming very early and others more closely

resembling the categorization thresholds. We calculated 95%

confidence intervals around the means and found that the pre-

sentation-duration threshold was significantly shorter for forest

than for other basic-level categories, and was significantly longer

for openness and transience than for other global properties.

DISCUSSION

A large amount of meaningful information can be gleaned from a

single glance at a scene (Bacon-Mace et al., 2005; Biederman,

TABLE 2

Presentation-Time Thresholds and Maximum Image Exposures

Block

Threshold for
75%-correct

performance (ms)
Maximum image

exposure (ms)

Global-property classification

Concealment 35 (2.7) 97 (7.9)

Mean depth 26 (2.8) 75 (4.9)

Naturalness 19 (1.9) 63 (4.9)

Navigability 36 (4.5) 120 (9.2)

Openness 47 (4.6) 119 (9.5)

Temperature 29 (2.4) 119 (9.5)

Transience 45 (4.0) 123 (8.8)

Mean 34 (10) 102 (24)

Basic-level categorization

Desert 47 (4.7) 93 (7.2)

Field 55 (4.6) 95 (7.3)

Forest 30 (3.4) 78 (6.6)

Lake 51 (3.7) 100 (7.1)

Mountain 46 (3.3) 95 (6.2)

Ocean 55 (3.9) 105 (6.5)

River 67 (5.1) 113 (6.1)

Mean 50 (11) 97 (11)

Note. For the specific blocks, standard errors of the means are given in pa-
rentheses; for the means, standard deviations are given in parentheses. The
reported thresholds are the means of modal presentation durations and
thresholds estimated from Weibull fits.
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Rabinowitz, Glass, & Stacy, 1974; Castelhano & Henderson,

2008; Fei-Fei et al., 2007; Grill-Spector & Kanwisher, 2005;

Joubert et al., 2007; Maljkovic & Martini, 2005; Oliva & Schyns,

2000; Potter & Levy, 1969; Schyns & Oliva, 1994; Thorpe et al.,

1996; Renninger & Malik, 2004; and many other studies), but

our study is the first to establish perceptual benchmarks com-

paring the types of meaningful information that can be perceived

during very early perceptual processing.

What meaningful perceptual and conceptual information can

be understood from extraordinarily brief glances at a novel

scene? We have provided insight into this question by compar-

ing the shortest image exposures required for participants to

achieve equivalent performance (75% correct) on a number of

tasks involving classification of naturalistic scenes. We found

that this threshold ranged from 19 ms to 67 ms, and that per-

formance reached asymptote at about 100 ms of image exposure

(range: 63–123 ms; see Table 2). Remarkably, the threshold

presentation duration was, on average, shorter for perception of

a scene’s global properties than for perception of the scene’s

basic-level category. These results are related to other work in

ultrarapid scene perception (Joubert et al., 2007; Rousselet et

al., 2005), which has demonstrated that participants can classify

a scene as natural versus man-made more quickly than they can

make a semantic classification of the scene (e.g., mountain,

urban). Indeed, we also found that the image exposure thresh-

olds were shortest for classifying images according to whether or

not they were natural (19 ms).

Our results are complementary to those of studies examining

the accrual of image information over time (Fei-Fei et al., 2007;

Intraub, 1981; Rayner, Smith, Malcolm, & Henderson, 2009;

Tatler et al., 2003). For instance, Rayner et al. (2009) found that

although participants rapidly understood the overall semantic

topic of a scene, they required at least a 150-ms fixation to find

an object within that scene (e.g., a broom in a warehouse image).

Likewise, in the study by Fei-Fei et al. (2007), observers viewed

briefly masked pictures depicting various events and scenery

(e.g., a soccer game, a busy hair salon, a choir, a dog playing

fetch) and then described in detail what they saw in the pictures.

Global scene information, such as whether an outdoor or indoor

scene was depicted, was perceived well above chance (50%)

with less than 100 ms of exposure. Although free-report re-

sponses may be confounded with inference (observers may
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Fig. 3. Example of threshold computation for (a) a block of global-property classification (concealment) and (b) a block of basic-level categorization
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overestimate the information seen in a brief glance of an image

on the basis of knowledge of the covariance among features and

objects in the real world; see Brewer & Treyans, 1981), and may

be biased toward reporting verbally describable information,

this study is consistent with others (e.g., Biederman et al., 1974;

Intraub, 1981; Potter, 1975; Schyns & Oliva, 1994; Tatler et al.,

2003) finding that as exposure duration increases, observers are

better able to fully perceive the details of an image.

Our findings agree with a global-to-local view of scene per-

ception (Navon, 1977; Oliva & Torralba, 2001; see also, e.g.,

Joubert et al., 2007; Schyns & Oliva, 1994). We have shown that

at the very early stages of visual analysis, certain global visual

information can be more easily gleaned from an image than even

its basic-level category. This result suggests the intriguing

possibility that there exists a time during early visual processing

when an observer will know, for example, that a scene is a

natural landscape or a large space, but does not yet know that it

is a mountain or a lake scene. Our result may be predicted by

computational work showing that basic-level scene categories

cluster along global-property dimensions describing the spatial

layout of scenes (the spatial-envelope theory; Oliva & Torralba,

2001). Furthermore, for human observers rapidly categorizing

scenes at the basic level, more false alarms are produced by

distractors that share global properties with the target category

than by distractors that do not share such properties with the

target category (e.g., more false alarms to images showing a

closed, rather than open, space when the target category is forest;

Greene & Oliva, 2009). The current results lend credence to the

possibility that rapid categorization of a scene may be achieved

through the perception of a few robust global properties of the

scene.

In the current study, the range of presentation-time thresholds

was large (19–67 ms), but remained well below 100 ms. There

was also a large range of thresholds within both types of clas-

sifications (19–47 ms for global-property classification and 30–

67 ms for basic-level categorization). This suggests that there is

substantial diversity in the diagnostic image information used

by observers to perform these tasks, and that these pieces of

information may be processed with different time courses.

It remains for future work to determine which image features

observers use to reach these remarkable levels of performance.

Recent studies in visual cognition suggest the intriguing pos-

sibility that the brain may be able to rapidly calculate robust

statistical summaries of features and objects—such as the mean

size of a set of shapes (Ariely, 2001; Chong & Treisman, 2005),

the average orientation of a pattern (Parkes, Lund, Angelucci,

Solomon, & Morgan, 2001), the center of mass of a set of objects

(Alvarez & Oliva, 2008), or even the average emotion of a set of

faces (Haberman & Whitney, 2007)—in an automatic fashion

(Chong & Treisman, 2005) and outside the focus of attention

(Alvarez & Oliva, 2008). This suggests that some tasks might be

performed with shorter presentation times than others because
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Fig. 4. Distributions of observers’ presentation-duration thresholds for (a) global-property classification and basic-level cate-
gorization, (b) each block of basic-level categorization, and (c) each block of global-property classification. All shown curves are
best-fitting Gaussians.
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their diagnostic features are coded somewhat more efficiently.

For instance, naturalness classification had the fastest threshold

in our study and the fastest reaction time in Joubert et al. (2007),

and has been shown to be correlated with low-level features,

distributed homogeneously over the image (Torralba & Oliva,

2003). Likewise, Renninger and Malik (2004) demonstrated that

texture statistics provided good predictions of human scene

categorization at very short presentation times. By abstracting

statistical homogeneities related to structural and functional

properties of a scene, the human brain may be able to compre-

hend complex visual information in a very short time.

Although people feel as if they instantaneously perceive a full,

rich, and meaningful world, this full understanding accumulates

over time. By understanding the time course of visual process-

ing, researchers can uncover bottlenecks in the accumulation

of this information. Uncovering the benchmarks of visual pro-

cessing at the feature level will be a significant step forward in

understanding the algorithms of human visual processing.
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