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Abstract

Multi-modal learning, which focuses on utilizing vari-
ous modalities to improve the performance of a model, is
widely used in video recognition. While traditional multi-
modal learning offers excellent recognition results, its com-
putational expense limits its impact for many real-world
applications. In this paper, we propose an adaptive multi-
modal learning framework, called AdaMML, that selects
on-the-fly the optimal modalities for each segment condi-
tioned on the input for efficient video recognition. Specif-
ically, given a video segment, a multi-modal policy net-
work is used to decide what modalities should be used for
processing by the recognition model, with the goal of im-
proving both accuracy and efficiency. We efficiently train
the policy network jointly with the recognition model us-
ing standard back-propagation. Extensive experiments on
four challenging diverse datasets demonstrate that our pro-
posed adaptive approach yields 35% − 55% reduction in
computation when compared to the traditional baseline
that simply uses all the modalities irrespective of the in-
put, while also achieving consistent improvements in ac-
curacy over the state-of-the-art methods. Project page:
https://rpand002.github.io/adamml.html.

1. Introduction
Videos are rich in multiple modalities: RGB frames, mo-

tion (optical flow), and audio. As a result, multi-modal
learning which focuses on utilizing various modalities to
improve the performance of a video recognition model, has
attracted much attention in the recent years. Despite en-
couraging progress, multi-modal learning becomes com-
putationally impractical in real-world scenarios where the
videos are untrimmed and span several minutes or even
hours. Given a long video, some modalities often provide
irrelevant/redundant information for the recognition of the
action class. Thus, utilizing information from all the input
modalities may be counterproductive as informative modali-
ties are often overwhelmed by uninformative ones in long
videos. Furthermore, some modalities require more compu-

tation than others and hence selecting the cheaper modality
with good performance can significantly save computation
leading to more efficient video recognition.

Let us consider the video in Figure 1, represented by eight
uniformly sampled video segments from a video. We ask,
Do all the segments require both RGB and audio stream to
recognize the action as “Mowing the Lawn” in this video?
The answer is clear: No, the lawn mower is moving with
relevant audio only in the third and sixth segment, therefore
we need both RGB and audio streams for these two video
segments to improve the model confidence for recognizing
the correct action, while the rest of the segments can be
processed with only one modality or even skipped (e.g., the
first and last video segment) without losing any accuracy,
resulting in large computational savings compared to pro-
cessing all the segments using both modalities. Thus, in
contrast to the commonly used one-size-fits-all scheme for
multi-modal learning, we would like these decisions to be
made individually per input segment, leading to different
amounts of computation for different videos. Based on this
intuition, we present a new perspective for efficient video
recognition by adaptively selecting input modalities, on a
per segment basis, for recognizing complex actions.

In this paper, we propose AdaMML, a novel and differen-
tiable approach to learn a decision policy that selects optimal
modalities conditioned on the inputs for efficient video recog-
nition. Specifically, our main idea is to learn a model (re-
ferred to as the multi-modal policy network) that outputs the
posterior probabilities of all the binary decisions for using or
skipping each modality on a per segment basis. As these de-
cision functions are discrete and non-differentiable, we rely
on an efficient Gumbel-Softmax sampling approach [23]
to learn the decision policy jointly with the network pa-
rameters through standard back-propagation, without resort-
ing to complex reinforcement learning as in [60, 61]. We
design the objective function to achieve both competitive
performance and efficiency required for video recognition.
We demonstrate that adaptively selecting input modalities
by a lightweight policy network yields not only significant
savings in computation (e.g., about 47.3% and 35.2% less



Figure 1: A conceptual overview of our approach. Rather than processing both RGB and Audio modalities for all the segments, our
approach learns a policy to select the optimal modalities per input segment, that is needed to correctly recognize an action in a given video.
In the figure, the lawn mower is moving with relevant audio only in the third and sixth segment, therefore those segments could be processed
using both modalities, while the rest of the segments require only one modality (e.g., only audio is relevant for the fourth segment as the lawn
mower moves outside of the camera but its sound is still clear) or even skipped (e.g., both of the modalities are irrelevant in the first and the
last segment), without losing any accuracy. Note that our approach can be extended to any number of modalities as shown in experiments.

GFLOPS compared to a weighted fusion baseline that simply
uses all the modalities, on Kinetics-Sounds [2] and Activi-
tyNet [6] respectively), but also consistent improvement in
accuracy over the state-of-the-art methods.

The main contributions of our work are as follows:

• We propose a novel and differentiable approach that
automatically determines what modalities to use per
segment per input for efficient video recognition. This
is in sharp contrast to current multi-modal learning
approaches that utilizes all the input modalities without
considering their relevance to the video recognition.

• We efficiently train the multi-modal policy network
jointly with the recognition model using standard back-
propagation through Gumbel-Softmax sampling.

• We conduct extensive experiments on four video
benchmarks (Kinetics-Sounds [2], ActivityNet [6],
FCVID [24] and Mini-Sports1M [25]) with different
multi-modal learning tasks (RGB + Audio, RGB +
Flow, and RGB + Flow + Audio) to demonstrate the su-
periority of our approach over state-of-the-art methods.

2. Related Work

Efficient Video Recognition. Video recognition has been
one of the most active research areas in computer vision
recently [8]. In the context of deep neural networks, it is
typically performed by either 2D-CNNs [25, 51, 12, 53,
12, 32, 63] or 3D-CNNs [48, 7, 20, 13]. While extensive
studies have been conducted in the last few years, limited
efforts have been made towards efficient video recognition.
Specifically, methods for efficient recognition focus on either
designing new lightweight architectures (e.g., Tiny Video
Networks [39], channel-separated CNNs [49], and X3D [13])
or selecting salient frames/clips [61, 60, 30, 17, 57, 22, 34,

35, 37]. Our approach is most related to the latter which
focuses on conditional computation for videos and is agnos-
tic to the network architecture used for recognizing videos.
Representative methods typically use reinforcement learning
(RL) policy gradients [61, 60] or audio [30, 17] to select
relevant video frames. LiteEval [59] proposes a coarse-to-
fine framework that uses a binary gate for selecting either
coarse or fine features. Unlike existing works, our proposed
approach focuses on the multi-modal nature of videos and
adaptively selects the right modality per input instance for
recognizing complex actions in long videos. Moreover, our
framework is fully differentiable, and thus is easier to train
than complex RL policy gradients [61, 60, 57].
Multi-Modal Learning. Multi-modal learning has been
studied from multiple perspectives, such as two stream net-
works that fuse decisions from multiple modalities for clas-
sification [41, 7, 26, 27, 3], and cross-modal learning that
takes one modality as input and make prediction on the
other modality [29, 2, 62, 1, 15, 42]. Recent work in [52]
addresses the problem of joint training in multi-modal net-
works, without deciding which modality to focus for a given
input sample as in our current approach. Our proposed
AdaMML framework is also related to prior works in joint
appearance and motion modeling [43, 31, 10] that focuses
on combining RGB and optical flow streams. Design of
different fusion schemes [38] through neural architecture
search [64] is also another recent trend for multi-modal learn-
ing. In contrast, we propose an instance-specific general
framework for automatically selecting the right modality per
segment for efficient video recognition.
Adaptive Computation. Many adaptive computation meth-
ods have been recently proposed with the goal of improving
computational efficiency [4, 5, 50, 54, 18, 14, 33, 34]. While
BlockDrop [58] dynamically selects which layers to execute
per sample during inference, GaterNet [9] proposes a gating
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Figure 2: Illustration of our approach. AdaMML consists of a lightweight policy network and a recognition network composed of different
sub-networks that are trained jointly (via late fusion with learnable weights) for recognizing videos. The policy network decides what
modalities to use on a per segment basis to achieve the best recognition accuracy and efficiency in video recognition. In training, policies are
sampled from a Gumbel-Softmax distribution, which allows us to optimize the policy network via backpropagation. During inference, an
input segment is first fed into the policy network and then selected modalities are routed to the recognition network to generate segment-level
predictions. Finally, the network averages all the segment-level predictions to obtain the video-level prediction. Best viewed in color.

network to learn channel-wise binary gates for the main net-
work. Channel gating network [21] identifies regions in the
features that contribute less to the classification result, and
skips the computation on a subset of the input channels for
these ineffective regions. SpotTune [19] learns to adaptively
route information through fine-tuned or pre-trained layers
for different tasks. Adaptive selection of different regions
for fast object detection is presented in [36, 16]. While our
approach is inspired by these methods, in this paper, our goal
is to adaptively select optimal modalities per input instance
to improve efficiency in video recognition. To the best of our
knowledge, this is the first work on data-dependent selection
of different modalities for efficient video recognition.

3. Proposed Method
Given a video V containing a sequence of seg-

ments {s1, s2, · · · , sT } over K input modalities
{M1,M2, · · · ,MK}, our goal is to seek an adap-
tive multi-modal selection policy that decides what input
modalities should be used for each segment in order to
improve the accuracy, while taking the computational
efficiency into account for video recognition.

3.1. Approach Overview

Figure 2 illustrates an overview of our approach. Treating
the task of finding an optimal multi-modal selection pol-
icy as a search problem quickly becomes intractable as the
number of potential configurations grows exponentially with
the number of video segments and modalities. Instead of
handcrafting the selections, we develop a policy network
that contains a very lightweight joint feature extractor and an
LSTM module to output a binary policy vector per segment
per input, representing whether to keep or drop an input
modality for efficient multi-modal learning.

During training, the policy network is jointly trained
with the recognition network using Gumbel-Softmax sam-
pling [23]. At test time, first an input video segment is
fed into the policy network, whose output decides the right
modalities to use for the given segment, and then the se-
lected input modalities are routed to the corresponding
sub-networks in the recognition network to generate the
segment-level predictions. Finally, the network averages all
the segment-level predictions as the video-level prediction.
Note that the additional computational cost incurred by the
lightweight policy network (MobileNetV2 [40] in our case)
is negligible in comparison to the recognition model.

3.2. Learning Adaptive Multi-Modal Policy

Multi-Modal Policy Network. The policy network con-
tains a lightweight joint feature extractor and an LSTM mod-
ule for modeling the causality across different time steps in a
video. Specifically, at the t-th time step, the LSTM takes in
the joint feature ft of the current video segment st, previous
hidden states ht−1, cell outputs ot−1 to compute the current
hidden state ht and cell states ot:

ht, ot = LSTM(ft, ht−1, ot−1). (1)

Given the hidden state, the policy network estimates a policy
distribution for each modality and samples binary decisions
ut,k indicating whether to select modality k at time step t
(U = {ut,k}l≤T,k≤K) via Gumbel-Softmax operation as
described next. Given the decisions, we forward the current
segment to corresponding sub-networks to get a segment-
level prediction and average all segment-level predictions to
generate video-level prediction for an input video.
Training using Gumbel-Softmax Sampling. AdaMML
makes decisions about skipping or using each modality
per segment per input. However, the fact that the policy



is discrete makes the network non-differentiable and there-
fore difficult to be optimized with standard backpropagation.
One way to solve this is to convert the optimization to a
reinforcement learning problem and then derive the opti-
mal parameters of the policy network with policy gradient
methods [55, 46]. However, RL policy gradients are often
complex, unwieldy to train and require techniques to reduce
variance during training as well as it is slow to converge in
many applications [58, 59, 23, 57]. As an alternative, in this
paper, we adopt Gumbel-Softmax sampling [23] to resolve
this non-differentiability and enable direct optimization of
the discrete policy in an efficient way.

The Gumbel-Softmax trick [23] is a simple and effective
way to replace the original non-differentiable sample from
a discrete distribution with a differentiable sample from a
corresponding Gumbel-Softmax distribution. Specifically,
at each time step t, we first generate the logits zk ∈ R2 (i.e,
output scores of policy network for modality k) from hidden
states ht by a fully-connected layer zk = FCk(ht, θFCk)
for each modality and then use the Gumbel-Max trick [23]
to draw discrete samples from a categorical distribution as:

P̂k = argmax
i∈{0,1}

(log zi,k +Gi,k), k ∈ [1, ...,K] (2)

where Gi,k = − log(− logUi,k) is a standard Gumbel dis-
tribution with Ui,k sampled from a uniform i.i.d distribution
Unif(0, 1). Due to non-differentiable property of argmax
operation in Equation 2, Gumbel-Softmax distribution [23]
is thus used as a continuous relaxation to argmax. Accord-
ingly, sampling from a Gumbel-Softmax distribution allows
us to backpropagate from discrete samples to the policy net-
work. We represent P̂k as a one-hot vector and then one-hot
coding is relaxed to a real-valued vector Pk using softmax:

Pi,k =
exp((log zi,k +Gi,k)/τ)∑

j∈{0,1} exp((log zj,k +Gj,k)/τ)
, (3)

where i ∈ {0, 1}, k ∈ [1, ...,K], τ is a temperature pa-
rameter, which controls the discreteness of Pk, as lim

τ→+∞
Pk

converges to a uniform distribution and lim
τ→0

Pk becomes a
one-hot vector. More specifically, when τ becomes closer
to 0, the samples from the Gumbel Softmax distribution be-
come indistinguishable from the discrete distribution (i.e,
almost the same as the one-hot vector). In summary, during
the forward pass, we sample the policy using Equation 2
and during the backward pass, we approximate the gradient
of the discrete samples by computing the gradient of the
continuous softmax relaxation in Equation 3.

3.3. Loss Function

Let Θ = {θΦ, θLSTM , θFC1 , ..., θFCK
, θΨ1 , ..., θΨK

}
denote the total trainable parameters in our framework,
where θΦ and θLSTM represent the parameters of the joint

feature extractor and LSTM used in the policy network re-
spectively. θFC1 , ..., θFCK

represent the parameters of the
fully connected layers that generate policy logits from the
LSTM hidden states and θΨ1

, ..., θΨK
represent the parame-

ters of K sub-networks that are jointly trained for recogniz-
ing video. During training, we minimize the following loss
to encourage both correct predictions as well as minimize
the selection of modalities that require more computation.

E(V,y)∼Dtrain

[
−y log(P(V ; Θ)) +

K∑
k=1

λkCk

]
,

Ck =

{
(
|Uk|0
C

)2 if correct

γ otherwise

(4)

where P(V ; Θ) and y represents the prediction and one-hot
encoded ground truth label of the training video sample V
and λk represents the cost associated with processing k-th
modality. Uk represents the decision policy for k-th modality

and Ck = (
|Uk|0
C

)2 measures the fraction of segments that
selected modality k out of total C video segments; when a
correct prediction is produced. We penalize incorrect pre-
dictions with γ, which including λk controls the trade-off
between efficiency and accuracy. We use these parameters
to vary the operating point of our model, allowing different
models to be trained depending on the target budget con-
straint. While the first part of the Equation 4 represents
the standard cross-entropy loss to measure the classification
quality, the second part drives the network to learn a pol-
icy that favors selection of modality that is computationally
more efficient in recognizing videos (e.g., processing RGB
frames requires more computation than the audio streams).

4. Experiments
In this section, we conduct extensive experiments on four

standard datasets to show that AdaMML outperforms many
strong baselines including state-of-the-art methods while
significantly reducing computation and qualitative analysis
to verify the effectiveness of our adaptive policy learning.

4.1. Experimental Setup

Datasets and Tasks. We evaluate the performance of our
approach using four datasets, namely Kinetics-Sounds [2],
ActivityNet-v1.3 [6], FCVID [24], and Mini-Sports1M [25].
Kinetics-Sounds is a subset of Kinetics [7] and consists of
22, 521 videos for training and 1, 532 videos testing across
31 action classes [17]. ActivityNet contains 10, 024 videos
for training and 4, 926 videos for validation across 200 ac-
tion categories. FCVID has 45, 611 videos for training and
45, 612 videos for testing across 239 classes. Mini-Sports1M
(assembled by [17]) is a subset of full Sports1M dataset [25]
containing 30 videos per class in training and 10 videos per



Dataset Kinetics-Sounds ActivityNet

Selection Rate (%) Selection Rate (%)
Method Acc. (%) RGB Audio GFLOPs mAP (%) RGB Audio GFLOPs

RGB 82.85 100 − 141.36 73.24 100 − 141.36
Audio 65.49 − 100 3.82 13.88 − 100 3.82

Weighted Fusion 87.86 100 100 145.17 72.88 100 100 145.17
AdaMML 88.17 46.47 94.15 76.45 (-47.3%) 73.91 76.25 56.35 94.01 (-35.2%)

Table 1: Video recognition results with RGB + Audio modalities on Kinetics-Sounds and ActivityNet. On both datasets, our proposed
approach AdaMML outperforms the weighted fusion baseline while offering significant computational savings (shown in blue).

Selection Rate (%)
Method Acc. (%) RGB Flow GFLOPs

RGB 82.85 100 − 141.36
Flow 75.73 − 100 163.39

Weighted Fusion 83.47 100 100 304.75
AdaMML-Flow 83.82 56.04 36.39 151.54 (-50.3%)

AdaMML-RGBDiff 84.36 44.61 37.40 137.03 (-55.0%)

Table 2: RGB + Flow on Kinetics-Sounds. AdaMML-RGBDiff
obtains best performance with more than 50% savings in GFLOPs.

Selection Rate (%)
Method Acc. (%) RGB Flow Audio GFLOPs

RGB 82.85 100 − − 141.36
Flow 75.73 − 100 − 163.39
Audio 65.49 − − 100 3.82

Weighted Fusion 88.25 100 100 100 308.56
AdaMML-Flow 88.54 56.13 20.31 97.49 132.94 (-56.9%)

AdaMML-RGBDiff 89.06 55.06 26.82 95.12 141.97 (-54.0%)

Table 3: RGB + Flow + Audio on Kinetics-Sounds. AdaMML-
RGBDiff obtains the best accuracy of 89.06% which is 6.21%
more than RGB only performance with similar GFLOPS.

class in testing with a total of 487 action classes. We con-
sider three groups of multi-modal learning tasks such as (I)
RGB + Audio, (II) RGB + Flow, and (III) RGB + Flow +
Audio on different datasets. More details about the datasets
can be found in the supplementary material.

Data Inputs. For each input segment, we take around 1-
second of data and temporally align all the modalities. For
RGB, we uniformly sample 8 frames out of 32 consecutive
frames (8×224×224); and for optical flow, we stack 10 inter-
leaved horizontal and vertical optical flow frames [51]. For
audio, we use a 1-channel audio-spectrogram as input [26]
(256 × 256, which is 1.28 seconds audio segment). Note
that since computing optical flow is very expensive, we uti-
lize RGB frame difference as a proxy to flow in our policy
network and compute flow when needed. For RGB frame
difference, we follow similar approach used in optical flow
and use an input clip 15× 8× 224× 224 by simply comput-
ing the frame differences. For the policy network, we further
subsample the input data for non-audio modality, e.g., the
RGB input becomes 4× 160× 160.

Implementation Details. For the recognition network, we
use TSN-like ResNet-50 [51] for both RGB and Flow modal-
ities, and MobileNetV2 [40] for the audio modality. We
simply apply late-fusion with learnable weights over the pre-
dictions from each modality to obtain the final prediction.
We use MobileNetV2 for all modalities in the policy network
to extract features and then apply two additional FC layers
with dimension 2, 048 to concatenate the features from all
modalities as the joint-feature. The hidden dimension of
LSTM is set to 256. We use K parallel FC layers on top
of LSTM outputs to generate the binary decision policy for
each modality. The computational cost for processing RGB
+ Audio in the policy network and the recognition network
are 0.76 and 14.52 GFLOPs, respectively.
Training Details. During policy learning, we observe that
optimizing for both accuracy and efficiency is not effective
with a randomly initialized policy. Thus, we fix the policy
network and “warm up” the recognition network using the
unimodality models (trained with ImageNet weights) for 5
epochs to provide a good starting point for policy learning.
We then alternatively train both policy and recognition net-
works for 20 epochs and then fine-tune the recognition net-
work with a fixed policy network for another 10 epochs. We
use same initialization and total number of training epochs
for all the baselines (including our approach) for a fair com-
parison. We use 5 segments from a video during training in
all our experiments (C set to 5). We use Adam [28] for the
policy network and SGD [45] for the recognition network
following [56, 44]. We set the initial temperature τ to 5, and
gradually anneal down to 0 during the training, as in [23].
Furthermore, at test time, we use the same temperature τ that
corresponded to the training epoch in the annealing schedule.
The weight decay is set to 0.0001 and momentum in SGD is
0.9. λk is set to the ratio of the computational load between
modalities and γ is 10. More implementation details are
included in the supplementary material.
Baselines. We compare our approach with the following
baselines and existing approaches. First, we consider uni-
modality baselines where we train recognition models using
each modality separately. Second, we compare with a joint
training baseline, denoted as “Weighted Fusion”, that simply



ActivityNet FCVID

Method mAP (%) GFLOPs mAP (%) GFLOPs

FrameGlimpse 60.14 33.33 67.55 30.10
FastForward 54.64 17.86 71.21 66.11
AdaFrame 71.5 78.69 80.2 75.13
LiteEval 72.7 95.1 80.0 94.3
AdaMML 73.91 94.01 85.82 93.86

Table 4: Comparison with state-of-the-art methods on Activi-
tyNet and FCVID. AdaMML outperforms LiteEval [59] in terms
of accuracy (∼1%–5%) with similar computation on both datasets.

Kinetics-Sounds Mini-Sports1M

Method Acc. (%) GFLOPs mAP (%) GFLOPs

LiteEval 72.02 104.06 43.64 151.83
AdaMML 88.17 76.45 46.08 138.32

Table 5: Comparison with LiteEval [59] on Kinetics-Sounds
and Mini-Sports1M. AdaMML outperforms LiteEval by a signifi-
cant margin in both accuracy and GFLOPs on both datasets.

uses all the modalities (instead of selecting optimal modali-
ties per input) via late fusion with learnable weights. This
serves as a very strong baseline for classification, at the cost
of heavy computation. Finally, we compare our method
with existing efficient video recognition approaches, includ-
ing FrameGlimpse [61], FastForward [11], AdaFrame [60],
LiteEval [59] and ListenToLook [17]. We directly quote the
numbers reported in published papers when possible and
use author’s provided source codes for LiteEval on both
Kinetics-Sounds and Mini-Sports1M datasets.
Evaluation Metrics. We compute either video-level mAP
(mean average precision) or top-1 accuracy (average predic-
tions of 10 224×224 center-cropped and uniformly sampled
segments) to measure the overall performance of different
methods. We also report the average selection rate, com-
puted as the percentage of total segments within a modality
that are selected by the policy network in the test set, to show
adaptive modality selection in our proposed approach. We
measure computational cost with giga floating-point opera-
tions (GFLOPs), which is a hardware independent metric.

4.2. Main Results

Comparison with Weighted Fusion Baseline. We first
compare AdaMML with the unimodality and weighted fu-
sion baseline on Kinetics-Sounds and ActivityNet dataset
under different task combinations (Table 1-3). Note that our
approach is not entirely focused on accuracy. In fact, our
main objective is to achieve both competitive performance
and efficiency required for video recognition. As for efficient
recognition, it is very challenging to achieve improvements
in both accuracy and efficiency. However, as shown in Ta-
ble 1, AdaMML outperforms the weighted fusion baseline

Network
Method RGB Audio mAP (%) GFLOPs

ListenToLook ResNet-18 ResNet-18 76.61 112.65
AdaMML 112×112 ResNet-18 ResNet-18 79.48 70.87
AdaMML 224×224 ResNet-18 ResNet-18 80.05 82.33

AdaMML 224×224 ResNet-50 MobileNetV2 84.73 110.14
AdaMML 224×224 EfficientNet-b3 EfficientNet-b0 85.62 30.55

Table 6: Comparison with ListenToLook [17] on ActivityNet.
AdaMML outperforms ListenToLook by 3.44% in mAP while of-
fering 26.9% computational savings in terms of GFLOPs.

while offering 47.3% and 35.2% reduction in GFLOPs, on
Kinetics-Sounds and ActivityNet, respectively. Interestingly
on ActivityNet, while performance of the weighted fusion
baseline is worse than the best single stream model (i.e.,
RGB only), our approach outperforms the best single stream
model on both datasets by adaptively selecting input modali-
ties that are relevant for the recognition of the action class.

Table 2 and Table 3 show the results of RGB + Flow and
RGB + Flow + Audio combinations on the Kinetics-Sounds.
Overall, AdaMML-Flow (which uses optical flow in policy
network) outperforms the joint training baseline while offer-
ing 50.3% (304.75 vs 151.54) and 56.9% (308.56 vs 132.94)
reduction in GFLOPs on RGB + Flow and RGB + Flow +
Audio combinations, respectively. AdaMML-RGBDiff (that
uses RGBDiff in policy learning) achieves similar perfor-
mance compared to AdaMML-Flow while alleviating com-
putational overhead of computing optical flow (for irrelevant
video segments), which shows that RGBDiff is in fact a good
proxy for predicting on-demand flow computation during
test time. In summary, our consistent improvements in ac-
curacy over the weighted fusion baseline with 35%− 55%
computational savings, shows the importance of adaptive
modality selection for efficient video recognition.

Comparison with State-of-the-art Methods. Table 4
shows that AdaMML outperforms all the compared methods
to achieve the best performance of 73.91% and 85.82% in
mAP on ActivityNet and FCVID respectively. Our approach
achieves 1.21% and 5.82% mAP improvement over LiteE-
val [59] with similar GFLOPs on ActivityNet and FCVID
respectively. Moreover, AdaMML (tested using 5 segments)
outperforms LiteEval by 2.70% (80.0 vs 82.70) in mAP,
while saving 39.2% in GFLOPs (94.3 vs 57.3) on FCVID.

Table 5 further shows that AdaMML significantly out-
performs LiteEval by 16.15% and 2.44%, while reducing
GFLOPS by 26.5% and 8.6%, on Kinetics-Sounds and Mini-
Sports1M respectively. In summary, AdaMML is clearly
better than LiteEval in terms of both accuracy and compu-
tational cost on all datasets, making it suitable for efficient
recognition. Note that FrameGlimpse [61], FastForward [11]
and AdaFrame [60] have less computation as they require
access to future frames unlike LiteEval and AdaMML that
makes decision based on the current time stamp only.



RGB + Audio RGB + Flow RGB + Flow + Audio

Method Acc. (%) GFLOPs Acc. (%) GFLOPs Acc. (%) GFLOPs

Average Fusion 88.15 145.17 83.30 304.75 88.18 308.56
Class-wise Weighted Fusion 87.86 145.17 83.82 304.75 87.75 308.56

Max Fusion 86.49 145.17 83.47 304.75 88.06 308.56
FC2 Fusion∗ 87.73 145.17 83.30 304.75 87.84 308.56

Weighted Fusion 87.86 145.17 83.47 304.75 88.25 308.56
AdaMML 88.17 76.45 84.36 137.03 89.06 141.97

∗: concatenating feature vectors from all modalities and add two addition fully-connected layers to fuse features.

Table 7: Comparison with fusion strategies on Kinetics-
Sounds. AdaMML consistently outperforms hand-designed fusion
strategies with overall 50%− 60% computational savings.

In addition, we also compare with ListenToLook [17]
that uses both RGB and Audio to eliminate video redundan-
cies. As ListenToLook utilizes weight distillation from Ki-
netics400 pretrained model, we use Kinetics400 pretrained
weights instead of ImageNet weights to initialize our uni-
modality models for a comparison on ActivityNet in Table 6.
With the same network architecture (ResNet18) and frame
resolution (112×112), AdaMML outperforms ListenToLook
by a margin of 2.87% in mAP while using 37.1% less com-
putation. This once again shows that our proposed approach
of adaptively selecting right modalities on a per segment ba-
sis is able to yield not only significant savings in computation
but also improvement in accuracy. To show that the benefits
of our method extend even to more recent and efficient net-
works, we use EfficientNet [47] in our approach and observe
that it provides the best recognition performance of 85.62%
in mAP with only 30.55 GFLOPs (∼73% less computation
compared to AdaMML (ResNet50 — MobileNetV2)).

4.3. Ablation Studies

Comparison with Additional Fusion Strategies. We
compare with four additional fusion strategies including
weighted fusion on different combinations of modalities.
Table 7 shows that our approach AdaMML consistently out-
performs all the hand-designed fusion strategies while of-
fering 47.3%, 55.03% and 53.99% reduction in GFLOPs
on RGB + Audio, RGB + Flow and RGB + Flow + Audio
combinations on Kinetics-Sounds respectively. Furthermore,
AdaMML with RGBDiff as the proxy alleviates the compu-
tational overhead of computing optical flow (which is often
very expensive) making it suitable in online scenarios. Sim-
ilarly, AdaMML offers 19.2% computational savings while
outperforming these fusion strategies by a margin of about
2% in mAP on RGB + Audio combination on ActivityNet.
Policy Design. We investigate the effectiveness of our de-
sign of policy by either selecting or skipping both modalities
at same time instead of taking the decisions per modality.
In other words, we use a single FC layer in the policy net-
work which outputs the binary decisions where 1 indicate
the use of both modalities and 0 indicate skipping of both
modalities in our framework. AdaMML outperforms the alter-
native design (88.02 vs 88.17) while saving 18% GFLOPS
on Kinetics-Sounds. Selection of both modalities at the same

AcitivityNet Kinetics-Sounds

Method mAP (%) Acc. (%)

Random (Train) 70.34 84.34
Random (Test) 58.31 85.75

Random (Train + Test) 70.85 86.28
AdaMML 73.91 88.17

Table 8: Comparison with random policy on RGB + Audio.
Random (X) denotes random selection of modalities during X-
phase of the learning. AdaMML outperforms all the variants show-
ing effectiveness of learned policy in video recognition.

time increases the computation as it favors selection of more
RGB stream. On the other hand, AdaMML selects compar-
atively less RGB stream and focuses more on the cheaper
audio stream as many actions can be recognized by only
audio without looking into the RGB frames.

Comparison with Random Policy. We perform three dif-
ferent experiments by randomly selecting a modality with
50% probability during both training and testing. Table 8
shows that our approach AdaMML outperforms all the three
variants by a large margin (e.g., 15.60% and 2.42% im-
provement over Random (Test) on ActivityNet and Kinetics-
Sounds respectively) which demonstrates the effectiveness
of our learned policy in selecting the optimal modalities
per input instance while recognizing videos. We also com-
pare these variants using the same selection rate as ours and
AdaMML still outperforms them on ActivityNet and Kinetics-
Sounds (e.g., 8.18% and 2.14% increase over Random (Test)
and 2.23% and 1.55% increase over Random (Train + Test)).

Ablation on Training Losses. As discussed in Section 3.3,
λk and γ controls the trade-off between accuracy and com-
putational efficiency. We investigate the effect of efficiency
loss in RGB + Audio experiment on Kinetics-Sounds and
observe that training without efficiency loss (both λk and γ
set to 0) achieves a video accuracy of 88.82% (an improve-
ment of 0.65%) while requiring 47.3% more computation
than AdaMML that uses efficiency loss during training. Simi-
larly, using equal cost weights for both modalities (by setting
λrgb=λaudio=1) achieves an accuracy of 86.82% compared
to 88.17% using AdaMML, with very less utilization of audio
(only 39.13% in contrast to 94.15% using our approach). As
processing audio stream is much cheaper, we use λrgb = 1
and λaudio = 0.05 to favor selection of cheaper modalities
and achieves an accuracy of 88.17% with 76.45 GFLOPs on
Kinetics-Sounds. We further test the effect of penalty factor
γ in Equation 4 by varying it from [0, 2, 5, 10] and observe
that it has little effect on the final performance with the best
performance at γ = 10 in all our experiments.

Effectiveness of LSTM. We investigate the effectiveness of
LSTM in modeling video causality on the RGB + Audio
experiment and observe that directly predicting a choice



Figure 3: Qualitative examples showing the effectiveness of AdaMML in selecting the right modalities per video segment (marked
by green borders). (a, b) RGB + Audio: AdaMML selects RGB stream for second and third segments in (a) while skips irrelevant audio
coming from the reporter and background song. Similarly in (b), it is able to select RGB modality for only one segment while selecting the
entire audio stream as the action can be easily recognized with audio (Playing Piano). (c, d) RGB + Flow: Our approach selects flow stream
only when it is informative for the action, e.g., second and third segments in (c) and only second segment in (d). (e) RGB + Flow + Audio:
AdaMML selects audio for most of the segments (not for last two segments as the audio is not clear with the mixing of sound from both
instruments) while selecting flow only for the sixth segment where the motion related to the action is clearly visible. Best viewed in color.

via a single fully-connected layer (i.e., by removing LSTM
from the policy network) decreases the video accuracy from
88.17% to 86.82% on Kinetics-Sounds. This confirms that
LSTM is critical for good performance as it makes the policy
network aware of all useful information seen so far.

Sampling Hyperparameters. We test the effect of temper-
ature (Equation 3) in RGB+Audio experiment on Kinetics-
Sounds dataset by varying it from [0, 0.5, 5, 10] and observe
that higher values (5, 10) show better performance (by 0.5%-
0.7%) than lower ones. So, we start at a high temperature
(set to 5 in all our experiments) and anneal it to a small non-
zero value, as in [23]. Similarly, we also vary the annealing
factor from [0, 0.5, 0.965] and notice that setting it to 0.965
leads to the best accuracy of 88.17% while 0 leads to an
accuracy of 87.40% on Kinetics-Sounds.

4.4. Qualitative Results

Figure 3 shows the selected modalities using our approach
on different cases ((a, b) RGB + Audio, (c, d) RGB + Flow,
and (e) RGB + Flow + Audio). As seen from Figure 3.(a),
our approach is able to select RGB modality for the seg-
ments that are more informative of the action and skip the
audio stream as audio in that video is irrelevant to the action

“fencing” (majority of audio comes from the reporter and
background song). Similarly in Figure 3.(b), it is able to
select RGB modality for only one segment while selecting
the entire audio stream as the action can be easily recog-
nized with audio (“Playing Piano”). Overall, we observe that
AdaMML focuses on the right modalities to use per segment
for correctly classifying videos while taking efficiency into
account (e.g., in Figure 3.(e), it mainly focus on audio for
most of the segments while selecting RGB only for two in-
formative segments and flow stream for the sixth segment
for recognizing the action “Playing Accordion”).

5. Conclusion
In this paper, we present AdaMML, a novel and differen-

tiable approach for adaptively determining what modalities
to use per segment per instance for efficient video recogni-
tion. In particular, we trained a multi-modal policy network
to predict these decisions with the goal of achieving both
competitive accuracy and efficiency. We efficiently train
the policy network jointly with the recognition model using
standard back-propagation. We demonstrate the effective-
ness of our proposed approach on four standard datasets,
outperforming several competing methods.
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