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What makes a photograph memorable?
Phillip Isola, Jianxiong Xiao, Member, IEEE, Devi Parikh, Member, IEEE, Antonio Torralba, Member, IEEE,

and Aude Oliva

Abstract—When glancing at a magazine, or browsing the Internet, we are continuously exposed to photographs. Despite this overflow
of visual information, humans are extremely good at remembering thousands of pictures along with some of their visual details. But not
all images are equal in memory. Some stick in our minds while others are quickly forgotten. In this paper we focus on the problem of
predicting how memorable an image will be. We show that memorability is an intrinsic and stable property of an image that is shared
across different viewers, and remains stable across delays. We introduce a database for which we have measured the probability that
each picture will be recognized after a single view. We analyze a collection of image features, labels, and attributes that contribute to
making an image memorable, and we train a predictor based on global image descriptors. We find that predicting image memorability
is a task that can be addressed with current computer vision techniques. While making memorable images is a challenging task in
visualization, photography, and education, this work is a first attempt to quantify this useful property of images.

Index Terms—Scene understanding, image memorability, global image features, attributes
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1 INTRODUCTION

People have the remarkable ability to remember thousands of

pictures they saw only once [1], [2], even when they were

exposed to many other images that look alike [3], [4]. We do

not just remember the gist of a picture, but we are able to

recognize which precise image we saw along with some of its

details [5], [3], [4], [6]. However, not all images are remem-

bered equally well. Some pictures stick in our minds whereas

others fade away. The reasons why images are remembered

may be highly varied; some pictures might contain friends, a

fun event involving family members, or a particular moment

during a trip. Other images might not contain any recognizable

monuments or people and yet also be highly memorable [5],

[3], [2]. In this paper we are interested in this latter group of

pictures: what makes a generic photograph memorable?

Whereas most studies on human visual memory have been

devoted to evaluating how good average picture memory can

be, no work has systematically studied differences between

individual images and if those differences are consistent across

different viewers. Can a specific photograph be memorable to

all of us, and can we estimate what makes it distinctive?

Similar to other subjective image properties, memorability is

likely to be influenced by the user context and also be subject

to some degree of inter-subject variability [7]. However, de-

spite this expected variability when evaluating subjective prop-

erties of images, there is often also a sufficiently large degree

of consistency between different users’ judgments, suggesting

it is possible to devise automatic systems to estimate these

properties directly from images, ignoring user differences.

As opposed to other image properties, there are no previous

studies that try to quantify individual, everyday photos in
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terms of how memorable they are, and there are no computer

vision systems that try to predict image memorability. This

is contrary to many other photographic properties that have

been addressed in the literature such as photo quality [8],

aesthetics [9], [10], interestingness [11], saliency [12], attrac-

tiveness [13], composition [14], [15], color harmony [16],

and importance [17], [18]. Also, there are no databases of

photographs calibrated in terms of the degree of memorability

of each image.

In this paper, we characterize an image’s memorability

as the probability that an observer will detect a repetition

of a photograph at various delays after exposition, when

presented amidst a stream of images. This setting allows us to

measure long-term memory performance for a large collection

of images 1. We mine this data to identify which features of the

images correlate with memorability, and we train memorability

predictors on these features. Whereas further studies will be

needed to validate these predictions on other datasets, the

present work constitutes an initial benchmark for quantifying

image memorability. A previous version of this work appeared

partly in [20] and [21].

Just like aesthetics, interestingness, and other metrics of

image importance, memorability quantifies something about

the utility of a photograph toward our everyday lives. For

many practical tasks, memorability is an especially desirable

property to maximize. For example, this may be the case

when creating educational materials, logos, advertisements,

book covers, websites, and much more. Understanding mem-

orability, and being able to automatically predict it, lends

itself to a wide variety of applications in each of these areas.

By analyzing memorability, educators could create textbook

diagrams that stick in students’ minds, or mnemonic cartoons

1. Short-term memory typically can only hold 3 or 4 items at once [19]
and is generally tested over durations of just a few seconds; since participants
in our experiment had to hold many more images in memory and were tested
minutes to nearly one hour after the first presentation, the experiments tackle
long-term memory.
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Fig. 1: Each set of 8 images was selected according to one half of the
participants in our study as being (a) the 8 most memorable images,
(b) 8 average memorability images, and (c) the 8 least memorable
images. The number in parentheses gives the percent of times that
these images were remembered by an independent set of participants.

that help students learn a foreign language. Memorability

might also find application in user interface design. Memorable

icons could clarify a messy desktop, and memorable labels

could be stuck to pill jars and entryways in retirement homes.

Memorability could also be used as a metric to pick out the

most meaningful images from a photo collection or video.

For example, a video could be summarized with just its most

memorable frames, omitting the intervening images that would

have been forgotten anyway. Farther in the future, we hope

understanding memorability could lead to more fundamental

advances in computer vision and artificial intelligence. If we

can figure out what we humans remember, then we may be

able to design intelligent systems that acquire knowledge that

is similarly ecologically meaningful.

2 MEASURING IMAGE MEMORABILITY

Although we all have the intuition that some images will

capture our attention and will be easier to remember than

others, quantifying this intuition has only been addressed in

limited settings in previous experiments. Previous research has

looked at the effects of emotional images on memory [22] [23],

face photo memorability [24] [25], and the memorability of

facial caricatures [26] [27]. However, a comprehensive study

of the memorability of individual, natural photos has been

lacking. Are the photos remembered by one person more likely

to be remembered also by somebody else? In this section, we

characterize the consistency of image memory across different

observers and time delays. In order to do so, we built a

database of images (Figure 2), and we measured the prob-

ability of observers remembering each image (Figure 1 shows

example images that span a wide range of memorabilities).

2.1 How to measure image memorability?
Cognitive psychologists have been studying the mechanisms

and representations of human memory for nearly half a

century. Studies have examined memory at multiple scales

(e.g., perceptual, short-term, and long-term storage) and with a

variety of tasks. Classical paradigms include asking observers

if a given image has been seen before (repeat detection

method) and two alternative forced choice paradigms (i.e. two

images are presented at test, one novel and one old). Here we

are interested in modeling an ecological and explicit measure

of image memorability – namely, which images will tend to

be best recognized when re-encountered – and so we choose

a repeat detection task. The repeat detection paradigm also

allows us to test familiarity of a given image at different

delays after encoding the image (by showing the repeat image

after a few seconds, minutes, or hours). Thus, for present

usage, we simply define the ‘memorability’ of each image

as how often the participants will tend to correctly detected

a repetition of the image. Since motivation, attention, and

participant ability are all known to modulate raw memory

performance, we do not expect raw detection rates to be

constant across all participants and contexts. Therefore, we

chose to analyze memorability using rank scores, which we

expect should be more stable across changes in user focus and

ability.

2.2 The Visual Memory Game
In order to measure image memorability, we presented workers

on Amazon Mechanical Turk with a Visual Memory Game.

In the game, participants viewed a sequence of images, each

of which was displayed for 1 second, with a 1.4 second gap

in between image presentations (Figure 3). Their task was to

press the space bar whenever they saw an identical repeat of an

image at any time in the sequence [5] [3]. Participants received

feedback whenever they pressed a key (a green symbol shown

at the center of the screen for correct detection, and a gray X

for an error).

Image sequences were broken up into levels that consisted

of 120 images each. Each level took 4.8 minutes to perform.

At the end of each level, the participant saw his or her correct

response average score for that level, and was allowed to take a

short break. Participants could complete at most 30 levels, and

were able to exit the game at any time. A total of 665 workers
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Fig. 2: Sample of the database used for the memory study. The images are sorted from more memorable (left) to less memorable (right).

Fig. 3: Mechanical Turk workers played a “Memory Game” in which they watched for repeats in a long stream of images.

from Mechanical Turk (> 95% approval rate in Amazon’s

system) performed the game. Over 90% of our data came from

347 of these workers. We payed workers $0.30 per level in

proportion to the amount of the level completed, plus a $0.10

bonus per fully completed level. This adds up to about $5

per hour. The average worker stayed in the game for over 13

levels.

Unbeknownst to the participants, the sequence of images

was composed of ‘targets’ (2222 images) and ‘fillers’ (8220

images). Target and filler images represented a random sam-

pling of the scene categories from the SUN dataset [28] 1

All images were scaled and cropped about their centers to

be 256x256 pixels. The role of the fillers was two-fold: first,

they provided spacing between the first and second repetition

of a target; second, responses on repeated fillers constituted

a ‘vigilance task’ that allowed us to continuously check that

participants were attentive to the task [5], [3]. Repeats occurred

on the fillers with a spacing of 1-7 images, and on the targets

with a spacing of 91-109 images. Each target was sequenced

to repeat exactly once, and each filler was presented at most

once, unless it was a vigilance task filler, in which case it was

sequenced to repeat exactly once.

Stringent criteria were used to continuously screen worker

performance once they entered the game. First, the game

automatically ended whenever a participant fell below a 50%

success rate on the last 10 vigilance task repeats or above a

50% error rate on the last 30 non-repeat images. When this

happened, all data collected on the current level was discarded.

Rejection criterion reset after each level. If a participant failed

any of the vigilance criteria, they were flagged. After receiving

three such flags they were blocked from further participation

in the experiment. Otherwise, participants were able to restart

1. In addition, 717 of the 8220 filler images were textural images; 178 of
these were actually sequenced as targets but since we did not include them
from our subsequent memorability analysis (which focused on generic photos
of natural scenes), we refer to them for present purposes as fillers.

the game as many times as they wished until completing the

max 30 levels. Upon each restart, the sequence was reset so

that the participant would never see an image they had seen in

a previous session. Finally, a qualification and training ‘demo’

preceded the actual memory game levels.

After collecting the data, we assigned a ‘memorability

score’ to each target image, defined as the percentage of

correct detections by participants. On average, each target was

scored by 78 participants. The average memorability score was

67.5% (SD of 13.6%). Average false alarm rate was 10.7%

(SD of 7.6%).

Given this low false alarm rate, and the fact that false alarm

rates do not correlate with hit rates (ρ = 0.01), we expect that

false memories do not play a large role in our memorability

scores, and thus our scores are a good measure of correct

memories.

Throughout this paper, we refer to our the memorability

scores collected through our memory game as “ground truth”

memorability scores.

2.3 Is memorability consistent across observers?
Are the images that are more memorable (or forgettable) for

a group of observers also more likely to be remembered (or

forgotten) by a different group of observers?

To evaluate human consistency, we split our participant pool

into two independent halves, and quantified how well image

scores measured on the first half of the participants matched

image scores measured on the second half of the participants.

Averaging over 25 random split half trials, we calculated a

Spearman’s rank correlation (ρ) of 0.75 between these two sets

of scores. We sorted photos by their scores given by the first

half of the participants and plotted this against memorability

according to the second half of the participants (Figure 4).

This shows that, for example, if a repeat is correctly detected

80% of the time by one half of the participants, we can expect

the other half of the participants to correctly detect this repeat
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Fig. 4: Measures of human consistency. Participants were split into
two independent sets, Group 1 and Group 2. Left: Images were
ranked by memorability scores from participants in one or the other
group and plotted against the average memorability scores given by
participants in Group 1. For clarity, we convolved the resulting plots
with a length-25 box filter along the x-axis. The gray chance line
was simulated by assigning the images random ranks (i.e. randomly
permuting the x-axis). Right: Spearman’s rank correlation between
subject Groups 1 and 2 as a function of the mean number of scores
per image. Both left and right analyses were repeated for 25 random
splits and mean results are plotted. Error bars show 80% confidence
intervals over the 25 trials.

around 78% of the time, corroborating that this photo is truly

memorable. At the other end of the spectrum, if a repeat is

only detected 50% of the time by one half of the participants,

the other half will tend to detect it only 54% of the time – this

photo is consistently forgotten. It thus appears that there really

is sizable variation in photo memorability. (Figure 4). Thus,

our data has enough consistency that it should be possible to

predict image memorability. Individual differences and random

variability in the context each participant saw add noise to the

estimation; nonetheless, this level of consistency suggests that

information intrinsic to the images might be used by different

people to remember them. In section 3, we search for this

image information.

2.4 Is memorability consistent over time?

In the previous sections, we showed that memorability tested

after a few minutes is a stable property of images independent

of randomized user and image sequence. But is memorability

also stable over various time delays? We ran a variant of our

Memory Game to test the effect of delay on image memorabil-

ity. The procedure was the same as reported above (including

vigilance and target repeats) except that target repeats were

sequenced to appear at one of three possible delays, tapping

into long term visual representations: ∼15 images back (with

jitter this condition corresponded to 11-19 images back) , ∼100

back (96-104 images back) and ∼1000 back (996-1004 images

back). So that the longest delay repeats would appear with

equal frequency to the shorter delay repeats, we did not start

any target repeats until after an initial 1080 images had been

presented (about 40 minutes of playing the memory game;

note that we presented vigilance repeats as usual during this

phase).
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Fig. 5: Image memorability versus delay between repeat and initial
presentation. Color depicts memorability rank at shortest delay. Lines
interpolate between the measurements at each of the three delays.
Spearman’s rank correlations between memorabilities measured at
each pair of delays are given above plot. For clarity of visualization,
each plotted point and line is the mean memorability of 22 images
binned in the order of memorability at the shortest delay.

We measured the memorability of each image at each delay

as the proportion of times a repeat of the image at that delay

was correctly detected, and collected about 30 scores per

delays. Figure 5 shows the memorability scores (percent of

correct responses) for the three delays: for clarity, each plotted

line is the mean memorability of 22 images binned in the order

of memorability at the shortest delay. Strikingly, even after the

shortest delay (11-19 images back; i.e. 24-48 seconds back),

there were already large memorability differences between

the images, and these differences were remarkably similar to

those at both longer delays: rank memorabilities at one delay

correlated strongly with those at the other delays: ρ = 0.61,

0.68 and 0.57 for the three pairwise comparisons (Figure 5).

Thus, it appears that rank memorability is stable over time.

For practical applications, this degree of stability is quite

fortunate. What is relatively memorable after ∼15 intervening

images is also relatively memorable after ∼1000 intervening

images. Thus, in order to predict memorability, we do not

need to model a complex time-dependent function; instead,

for our present purposes, we will treat rank memorability as

time-independent, and investigate its properties at the ∼100

image delay.

2.5 Role of context
A large body of research on human memory suggests that

we remember things in proportion to how well they stand out

from their local context (e.g., [2], [29], [30], [31], [32]). Our

present quest is to uncover factors that are intrinsic to an image

and make it memorable, independent of extrinsic variables

such as observer, time delay, and local visual context. By
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Fig. 6: Semantic frequencies in our dataset do not explain much of
the variance in memorability. Red line is linear least squares fit.
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Fig. 7: In each scatter plot, each dot corresponds to one image. a)
Comparison of memorability scores measured on Participant group 1
versus those measured on Participant group 2 in the memory game.
The plot shows that there is a strong correlation between two different
sets of subjects. b) Memorability scores from task 1 (memory) vs.
task 2 (repeat). c) Scores from task 1 vs. memorability measured
during the memory game (group 2).

randomizing the sequence each participant in our experiment

sees, we ensure that our measurements do not depend on the

precise order in which the photos were presented. However,

it remains unclear to what degree overall dataset statistics

could have affected the memorability scores. To test for simple

interactions with dataset context, we measured the correlation

between image content frequency in our dataset and mean

memorability over images with this content. For frequencies

of images containing a particular object, frequency of objects,

and frequencies of scene category we found no strong correla-

tion (ρ = −0.05, 0.01, and −0.13 respectively; Figure 6). This

suggests that these simple forms of dataset bias cannot explain

our results. Ultimately, to test more subtle possible interactions

with context, it will be important to measure memorability on

additional datasets and measure how well our present results

generalize.

2.6 Subjective judgments do not predict memorabil-
ity

In the previous section, we have shown that there is con-

sistency in image memorability between separate groups of

observers and over a wide range of time delays from image

presentation. In this section we want to explore a different

aspect of our measurements. When working with collections of

images, users are generally forced to make subjective decisions

such as choosing which images are most pleasing, or of highest

quality. Here we want to know how successful one user would

be if he or she were to guess which images are the most

memorable in a collection. To test this, we ran two experiments

on Mechanical Turk.

• Task 1 (Memory Judgment): we asked 30 participants to

indicate if they believe that an image is memorable or not.

Fig. 8: This figure is similar to figure 1 but using the judgments of
participants to select which images they believe are memorable and
which ones are not. (a) shows the 8 images participants thought would
be most memorable and (b) shows the 8 image participants thought
would be least memorable. In fact, however, set (a) has an average
memorability of 70% and set (b) has an average memorability of
74%, as measured in our memory game. This shows that people’s
intuitions about which images are memorable can be wrong.

In each HIT, we showed 36 images to each participant

and they had to provide for each image a binary answer

to the question “Is this a memorable image?”.

• Task 2 (Repeat Judgment): we also ran a separate task on

the same set of images asking 30 participants to perform

the next task: “For each of the images shown below,

please indicate if you would remember seeing it or not i.e.

If you were to come across this image in the morning,

and then happen to see it again at the end of the day,

do you think you would realize that you have seen this

image earlier in the day?”

For these two tasks we used the same set of 2222 target

images as in the previous experiment. For each image we

computed a score by averaging the 30 participant responses.

Both tasks provided similar results with a rank correlation

between the two of ρ = 0.76 (this value is similar to the

correlation between the two groups of participants obtained in

the memory experiment from section 2.3). This is illustrated in

Figure 7. Figure 7.a shows the scatter plot of the experiment of

section 2.3) and Figure 7.b shows the scatter plot comparing

the two binary Mechanical Turk tasks.

However, Figure 7.c shows that the subjective judgments on

which images are memorable do not predict the actual memory

results obtained during the memory game (rank correlation
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Fig. 9: This figure shows 4 sets of images illustrating the images in the four corners of the scatter plot from Figure 7.c. The number beside
each set of images corresponds to the average memorability measured by the memory game on each set of 8 images.

Fig. 10: In our dataset, image memorability is distinct from image aesthetics. The vertical axis separates images that are considered aesthetic
(right) vs. images that are consider not aesthetic (left). The horizontal axis separates the images that are memorable (on top) vs images that
are not memorable (bottom). The number beside each set of images corresponds to the average memorability measured by the memory game
on each set of 8 images.
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b) least aesthetic

a) most aesthetic

Fig. 11: Most and least aesthetic images from our dataset as chosen
by 30 participants. The top eight most aesthetic images have an
average memorability of 57%, while the least aesthetic images have
an average memorability of 84%.

between task 1 and the memory game is ρ = −0.19 and

between task 2 and the memory game is ρ = −0.02). Al-

though the memory game provides just one way of measuring

memorability, our results suggest that users sometimes have

the wrong intuition about memorability. Figure 8 shows the

images that observers believed would be most (a) and least

(b) memorable. These images are very different from the ones

shown in Figure 1.

Figure 9 further shows how subjective intuitions about

which images are memorable can be very wrong. This figure

shows 4 sets of images illustrating the images in the four

corners of the scatter plot from Figure 7.c. The top-left corner

shows 8 images that participants rated as being among the

least memorable images while doing task 1. However, those

images were among the most memorable images during the

memory game. Analogously, images in the bottom-right corner

were rated as among the most memorable images in task 1,

but they were among the least memorable images during the

memory game.

Interestingly, despite that memorability is highly consistent

across observers, people do not have a good intuition about

which images are memorable and which ones are not. In

contrast with these subjective intuitions, our ground truth

memorability scores provide an objective measure of how an

image will affect an observer’s memory.

3 WHAT MAKES AN IMAGE MEMORABLE?
Among the many reasons why an image might be remembered

by a viewer, we investigate first the role of various image-

b) least interesting

a) most interesting

Fig. 12: Most and least interesting images from our dataset as chosen
by 30 participants.The top eight most interesting images have an
average memorability of 70%, while the least interesting images have
an average memorability of 78%.

based and semantic properties of the images: color, simple

image features, object statistics, object semantics, scene se-

mantics, and high-level attributes. First, we will show that

some of the aspects that observers believe contribute to make

an image more memorable do not predict which images are

memorable.

3.1 Memorability, aesthetics, and interestingness
One important question to explore is the relationship between

image memorability and other subjective image properties

such as aesthetic judgments or image interestingness. To

measure image aesthetic value and interestingness we ran

two separate Mechanical Turk experiments on the 2222 target

images. Participants were asked the questions “Is this an

aesthetic image?” and “Is this an interesting image?” and had

to answer this “Yes” or “No” for 36 images per HIT. For each

image we computed an aesthetic and an interestingness score

by averaging the answers given by 30 participants.

Figure 11 shows the most and least aesthetic images and

Figure 12 shows the most and least interesting images out

of the 2222 images from our dataset. We found that inter-

estingness and aesthetics subjective judgments are strongly

correlated (ρ = 0.85, see Figure 13.a).

FIgure 13.b and c show the scatter plot of memorability

(measured in the memory game) as a function of the image

aesthetic score and image interestingness score. Each dot in

the plot corresponds to one image. These two image prop-

erties correlate weakly with image memorability. ρ = −0.36
between aesthetics and memorability and ρ = −0.23 between
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interestingness and memorability. The negative values indicate

that, in our database, images that were less aesthetic and less

interesting turned out to be more memorable than beautiful

and interesting images.

Interestingly, image aesthetics and interestingness strongly

correlate with the subjective judgments of image memorability

(ρ = 0.83 and ρ = 0.86 respectively for task 1). This illustrates

that participants had the wrong intuition that beautiful and

interesting images will produce a lasting memory.

Figure 10 shows 4 sets of 8 images each showing the images

on the four corners of the scatter plot from Figure 13.c. This

figure shows how many of the most aesthetic images are also

among the least memorable ones (e.g., the 8 images from the

bottom-right corner of Figure 10).

Together, these results show that image memorability is an

image property that is distinct from two other commonly used

subjective image properties.

3.2 Color and simple image features
Are simple image features enough to determine whether or

not an image will be memorable? We looked at the correlation

between memorability and basic pixel statistics. Mean hue was

weakly predictive of memory: as mean hue transitions from

red to green to blue to purple, memorability tends to go down

(ρ = -0.16). This correlation may be due to blue and green

outdoor landscapes being remembered less frequently than

more warmly colored human faces and indoor scenes. Mean

saturation and value, on the other hand, as well as the first three

moments of the pixel intensity histogram, exhibited weaker

correlations with memorability (Figure 14). These findings

concord with other work that has shown that perceptual

features are not retained in long term visual memory [2], [6].

In order to make useful predictions, more descriptive features

are likely necessary.

3.3 Object statistics
Object understanding is necessary to human picture memory

[33], [2]. Using LabelMe [34], each image in our target

set was segmented into object regions and each of these

segments was given an object class label by a human user (e.g.,

“person”, “mountain”, “stethoscope”) (see [35] for details). In

this section, we quantify the degree to which our data can be

explained by non-semantic object statistics.

Do such statistics predict memorability? For example do the

number of objects one can attach to an image determine its
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Fig. 14: Simple image features, as well as non-semantic object
statistics, do not correlate strongly with memorability score. Red line
is linear least squares fit.

memorability, or is it critical that an object class takes up a

large portion of an image in order for the image to stick in

memory? We find the answer to be no: none of these statistics

make good predictions on their own. Simple object statistics

(log number of objects, log mean pixel coverage over present

object classes, and log max pixel coverage over object classes)

did not correlate strongly with memorability (ρ = 0.07, -0.06,

and -0.09 respectively) (Figure 14).

To investigate the role of more subtle interactions between

these statistics, we trained a support vector regression (ε-SVR

[36]) to map object statistics to memorability scores. For each

image, we measured several object statistics: the number of

objects in the image per class, and the number of pixels

covered by objects of each class in the entire image as well as

in each quadrant of the image. For each of these statistics, we

thereby obtained joint distribution on (object class, statistic).

We then marginalized across class to generate histograms that

only measure statistics of the image segmentation, and contain

no semantic information: ‘Object Counts’, ‘Object Areas’, and,

concatenating pixel coverage on the entire image with pixel

coverage per quadrant, ‘Multiscale Object Areas’. We used

these histograms as features for our regression and applied

histogram intersection kernels.

For each of 25 regression trials, we split both our image

set and our participant set into two independent, random

halves. We trained on one half of the images, which were

scored by one half of the participants, and tested on the left

out images, which were scored by the left out participants.

During training, we performed grid search to choose cost and

ε hyperparameters for each SVR.

We quantified the performance of our predictions similarly
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Object Object Multiscale Object Labeled Labeled Labeled Scene Attributes Objects, Other
Counts Areas Object Label Object Object Multiscale Category Attributes, Humans

Areas Presences Counts Areas Object Areas and Scenes

Top 20 68% 68% 73% 83% 81% 84% 84% 81% 87% 88% 86%
Top 100 68% 68% 72% 79% 79% 82% 82% 78% 83% 83% 84%
Bottom 100 67% 64% 64% 57% 57% 56% 56% 57% 54% 55% 47%
Bottom 20 67% 64% 65% 54% 54% 52% 53% 56% 53% 51% 40%
ρ 0.04 0.04 0.20 0.43 0.44 0.47 0.47 0.37 0.51 0.54 0.75

TABLE 1: Comparison of predicted versus measured memorabilities. Images are sorted into sets according to predictions made on the basis
of a variety of object and scene features (denoted by column headings). Average ground truth memorabilities are reported for each set. e.g.,
The “Top 20” row reports average ground truth memorability over the images with the top 20 highest predicted memorabilities. ρ is the
Spearman rank correlation between predictions and measurements.

to how we analyzed human consistency above. First, we

calculated average ρ between predicted memorabilities and

ground truth memorabilities. Second, we sorted images by

predicted score and selected various ranges of images in this

order, examining average ground truth memorability on these

ranges (Table 1). As an upper-bound, we compared to a

measure of the available consistency in our data, in which

we predicted that each test set image would have the same

memorability according to our test set participants as was

measured by our training set participants (‘Other Humans’).
Quantified in this way, our regressions on object statistics

appear ineffective at predicting memorability (Table 1). How-

ever, predictions made on the basis of the Multiscale Object

Areas did begin to show substantial correlation with measured

memorability scores (ρ = 0.20). Unlike the Object Counts

and Object Areas, the Multiscale Object Areas are sensitive

to changes across the image. As a result, these features may

have been able to identify cues such as “this image has a sky,”

while, according to the other statistics, a sky would have been

indistinguishable from a similarly large segment, such as a

closeup of a face.

3.4 Object and scene semantics
As demonstrated above, objects without semantics are not ef-

fective at predicting memorability. This is not surprising given

the large role that semantics play in picture memory [33], [2].

To investigate the role of object semantics, we performed the

same regression as above, except this time using the entire

joint (object class, statistic) distributions as features. This gave

us histograms of ‘Labeled Object Counts’, ‘Labeled Object

Areas’, ‘Labeled Multiscale Object Areas’, and, thresholding

the labeled object counts about zero, ‘Object Label Presences’.

Each image was also assigned a scene category label as

described in [28] (‘Scene Category’). We applied histogram

intersection kernels to each of these features, and also tested

a combination of Labeled Multiscale Object Areas and Scene

Category features using a kernel sum (‘Objects and Scenes’).
Semantics boosted performance (Table 1). Even the Object

Label Presences alone, which simply convey a set of semantic

labels and otherwise do not describe anything about the

pixels in an image, performed well above our best unlabeled

object statistic, Multiscale Object Areas (ρ = 0.43 and 0.20

respectively). Moreover, Scene Category, which just gives a

single label per image, appears to summarize much of what

makes an image memorable (ρ = 0.37). These performances

support the idea that object and scene semantics are a primary

substrate of memorability [2], [3], [33].

3.5 Semantic attributes

Scene semantics go beyond just object content and scene

category. Hence, we investigate 127 semantic attributes that

capture the spatial layout of the scene (e.g., open, enclosed,

cluttered, etc.), aesthetics (e.g., postcard-like, unusual, etc.),

dynamics (e.g., static, dynamic, moving objects, etc), location

(e.g., famous place), emotions (e.g., frightening, funny, etc.),

actions (e.g., people walking, standing, sitting, etc.) as well

as demographics and appearance of people (e.g., clothing,

accessories, race, gender, etc.). Please see [18] for details.

As above, we train SVRs to map attributes to memorability

scores. Here, we use an RBF kernel, and achieve a perfor-

mance of ρ = 0.51. This performance is striking because

these attributes outperform all our above feature sets while also

being more concise (i.e. lower entropy [21]). This suggests that

high-level semantic attributes are an especially efficient way

of characterizing the memorability of a photo.

When we combine all our semantic features together with

a kernel sum (Labeled Multiscale Object Areas + Scene

Category + Attributes), we achieve a maximum performance

of ρ = 0.54.

3.6 Visualizing what makes an image memorable

Since object content appears to be important in determining

whether or not an image will be remembered, we further

investigated the contribution of objects by visualizing object-

based “memory maps” for each image. These maps shade each

object according to how much the object adds to, or subtracts

from, the image’s predicted memorability. More precisely,

to quantify the contribution of an object i to an image,

we take a prediction function, f , that maps object features

to memorability scores and calculate how its prediction m
changes when we zero features associated with object i from

the current image’s feature vector, (a1, · · · , an). This gives us

a score si for each object in a given image:

m1 = f(a1, · · · , ai, · · · , an) (1)

m2 = f(a1, · · · , 0, · · · , an) (2)

si = m1 −m2 (3)

For the prediction function f , we use our SVR on Labeled

Multiscale Object Areas, trained as above, and we plot mem-

ory maps on test set images (Figure 16). Thus, these maps

show predictions as to what will make a novel image either

remembered or not remembered. The validity of these maps is

supported by the fact that the SVR we used to generate them
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buildingceiling tree sky  (mountain
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objects

Bottom
objects

wall (+0.012)

Fig. 15: Objects sorted by their predicted impact on memorability. Next to each object name we report how much an image’s predicted
memorability will change, on average, when the object is included in the image’s feature vector versus when it is not. For each object name,
we also display two test set images that contain the object: on the left is the example image with the highest memorability score among all
test set images that contain (over 4000 pixels of) the object. On the right is the example with the lowest score. Only objects that appear
(cover over 4000 pixels) in at least 20 images in our training set are considered.

(the Labeled Multiscale Object Areas regression) makes pre-

dictions that correlate relatively well with measured memory

scores (ρ = 0.47, see Table 1).

This visualization gives a sense of how objects contribute

to the memorability of particular images. We are additionally

interested in which objects are important across all images. We

estimated an object’s overall contribution as its contribution

per image, calculated as above, averaged across all test set im-

ages in which it appears with substantial size (covers over 4000

pixels). This method sorts objects into an intuitive ordering:

people, interiors, foregrounds, and human-scale objects tend

to contribute positively to memorability; exteriors, wide angle

vistas, backgrounds, and natural scenes tend to contribute neg-

atively to memorability (Figure 15). While we require human

annotations to create these visualizations, Khosla et al. have

recently shown that they can generate similar memorability

maps automatically from unlabeled images [37].

HOG All Global
Pixels GIST SIFT SSIM 2x2 Features

Top 20 73% 82% 82% 83% 84% 83%
Top 100 73% 79% 79% 80% 80% 80%
Bottom 100 61% 58% 57% 58% 58% 56%
Bottom 20 59% 57% 55% 55% 56% 54%
ρ 0.22 0.38 0.41 0.43 0.43 0.46

TABLE 2: Comparison of global feature predictions versus ground
truth memory scores. Uses same measures as described in Table 1.

4 PREDICTING IMAGE MEMORABILITY
4.1 Predicting memorability of generic images
As we have seen in the previous sections there is a significant

degree of consistency between different sets of viewers on how

memorable are individual images. In addition, we have seen

that some of the consistency can be explained in terms of the

objects, scenes, and attributes present in the picture. In this

section, we describe an automatic predictor of memorability,

which uses only features algorithmically extracted from an

image. Here, we followed a similar approach to works studying

other subjective image properties [8], [15], [28].

As with the object regressions, we trained an SVR to map

from image features to memorability scores. We tested a suite

of global image descriptors that have been previously found

to be effective at scene recognition tasks [28] as well as being

able to predict the presence/absence of objects in images [38],

[39], [40]. The facility of these features at predicting image

semantics suggests that they may be able to predict, to some

degree, those aspects of memorability that derive from image

semantics.

These global features are GIST [41], and spatial pyramid

histograms of SIFT [42], HOG2x2 [38], [39], [28], and SSIM

[40] features. We additionally looked at pixel histograms,

which capture color distributions in an image: for each image,

we built the ‘pixel histogram’ as the concatenation of three 21-

bin histograms of intensity values, one for each color channel

of the RGB image. We used an RBF kernel for GIST and

histogram intersection kernels for the other features. Lastly,

we also combined all these features with a kernel product

(‘All Global Features’).

We evaluated performance in the same way as we evaluated

the object regressions, and we found that the combination of

global features performs best, achieving a rank correlation

of 0.46. This correlation is less than human predictions,

but close to our best predictions from labeled annotations.

Figure 17 shows sample images from predicted sets. Figure 19

shows sample images on which our global features regression

performed poorly.

To set a high watermark, and to get a sense of the redun-

dancy between our image features and our annotations, we

additionally trained an SVR on a kernel sum of all our global

features plus Labeled Multiscale Object Areas, Scene Cate-

gories, and Attributes (‘Global Features and Annotations’).

This combination achieved a rank correlation of ρ = 0.57.

See Table 2 and Figure 18 for detailed results.

The memorability variation we have predicted may appear

to be dominated by coarse categorical differences between im-

ages: e.g., photos of people are more memorable than photos

of landscapes. Can we also predict memorability differences

within categories? To investigate this, we selected subsets of

our dataset and analyzed and predicted variation within those

subsets.

4.2 Memorable photos of people
Photos of people are among the most memorable in our

dataset (average memorability score of 82%). Such photos

are also especially prevalent in everyday contexts – we share

photos of each other on Facebook, remember the faces of the

thousands of friends and celebrities [25], and may be swayed
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+ 0.090

Fig. 16: Visualization of how each object contributes to the memora-
bility of sample images spanning a range of memorability predictions.
We estimate contribution as the difference between predicted mem-
orability when the object is included in the image versus when it is
removed from the image. In red we show objects that contribute to
higher predicted memorability and in blue are objects that contribute
to lower predicted memorability. Brightness is proportional to the
magnitude of the contribution. Average measured memorability of
each sample set is given in parentheses.

by advertisements delivered by beautiful spokespeople. Con-

sequently, it may be especially useful to be able to predict the

memorability of photos of people.

We took a first step in this direction by testing our algorithm

just on the photos of people in our dataset (defined as photos

with at least 5,000 pixels labeled as person, or a synonym,

and with the attribute face visible). Within this subset, which

consisted of 209 photos, split half consistency between our

participants was ρ = 0.53 – robust variation in memorability

exists even within this constrained subset. Using our best

automatic predictor (‘All Global Features’), we achieved a

rank correlation between predictions and measurements of

ρ = 0.16. A summary of our predictions, and the ground truth

variability, is given in Figure 20. We additionally tried training

Fig. 17: The 8 images predicted, on the basis of global image features,
as being the most memorable out of all test set images (a), 8 images
with average memorability predictions (b), and the 8 images predicted
as being the least memorable of all test set images (c) . The number
in parentheses gives the mean ground truth memorability score for
images in each set. The predictions produce clear visual distinctions,
but may fail to notice more subtle cues that make certain images
more memorable than others.

SVRs on just photos of people, in order to perhaps better fit

to the specific variation in this class of photos. This training

scheme did not substantially improve performance (ρ = 0.17).

4.3 Memorable photos of nature

Photos of nature tend to be less memorable than artificial

scenes (average memorability score of 61%), but are all photos

of the natural world forgettable? We analyzed the subset of

photos in our dataset categorized as outdoor-natural in the

SUN dataset [28], and with less than 1,000 pixels labeled as

person (this gave us 373 photos in total). We analyzed this

subset in the same way as we analyzed the people subset: split

half consistency among experiment participants was ρ = 0.74
and our best predictor, trained on all photos and tested on

nature photos, reached ρ = 0.32 (training just on nature photos
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Fig. 18: Comparison of regressions results averaged across 25 random
split half trials. Images are ranked by predicted memorability and
plotted against the cumulative average of ground truth memorability
scores. Error bars omitted for clarity.

Fig. 19: The 8 images whose predicted memorability rank, on the
basis of global features, most overshot ground truth memorability
rank (a) and most undershot ground truth memorability rank (b). The
mean rank error between predicted and measured ranks across each
set of images is given in parentheses.

gives ρ = 0.29). Some photos of nature are consistently more

memorable than others (Figure 20).

4.4 Memorability of aesthetic images
Another image subset of particular interest is those images

marked as being aesthetic. We envision memorability scores

as being a useful and novel way of quantifying image utility.

However, for many applications, we may want images that

are not just memorable, but are also good in other ways. For

example, a photographer may want to identify images that are

both memorable and beautiful – photos of office chairs and

toilets, despite the fact that they may be memorable, probably

will not do. We are thus interested in combining multiple

photo quality metrics at once. Given ground truth aesthetics

ratings, can we automatically pick out the images that are both

beautiful and memorable?

Here we selected the top 250 photos with the highest value

of the Is this an aesthetic image? attribute defined in section

3.1. Split half consistency among experiment participants was

ρ = 0.76 and our predictions, trained on all photos and tested

on the selected aesthetic photos, reached ρ = 0.31 (training

on just the selected aesthetic photos gives ρ = 0.28).

5 CONCLUSION

Making memorable images is a challenging task in visualiza-

tion and photography, and is generally presented as a vague

concept hard to quantify. Surprisingly, there has been no previ-

ous attempt to systematically measure this property on image

collections, and to apply computer vision techniques to extract

memorability automatically. Measuring subjective properties

of photographs is an active domain of research with numerous

applications. Our present work could be used to extract, from

a collection of images, the ones that are most likely to be

remembered by viewers. This could be applied to selecting

images for illustrations, covers, user interfaces, educational

materials, memory clinical rehabilitation, and more.

In this paper we have shown that predicting image memo-

rability is a task that can be addressed with current computer

vision techniques. We have measured memorability using a

restricted experimental setting in order to obtain a meaningful

quantity: we defined an image’s memorability score as the

probability that a viewer will detect a repeat of the image

within a stream of pictures. We have shown that there is a large

degree of consistency among different viewers, even at differ-

ent time delays, and that some images are more memorable

than others even when there are no familiar elements (such as

relatives or famous monuments). This work is a first attempt

to quantify this important property of individual images.

Future work will investigate the relationship between image

memorability and other measures such as object importance

[17], [18], saliency [12], and photo quality [8].
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