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Abstract—The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can

summarize the important factors of variation behind the data. In this work, we describe Network Dissection, a method that interprets

networks by providing meaningful labels to their individual units. The proposed method quantifies the interpretability of CNN

representations by evaluating the alignment between individual hidden units and visual semantic concepts. By identifying the best

alignments, units are given interpretable labels ranging from colors, materials, textures, parts, objects and scenes. The method reveals

that deep representations are more transparent and interpretable than they would be under a random equivalently powerful basis. We

apply our approach to interpret and compare the latent representations of several network architectures trained to solve a wide range of

supervised and self-supervised tasks. We then examine factors affecting the network interpretability such as the number of the training

iterations, regularizations, different initialization parameters, as well as networks depth and width. Finally we show that the interpreted

units can be used to provide explicit explanations of a given CNN prediction for an image. Our results highlight that interpretability is an

important property of deep neural networks that provides new insights into what hierarchical structures can learn.

Index Terms—Convolutional neural networks, network interpretability, visual recognition, interpretable machine learning

Ç

1 INTRODUCTION

OBSERVATIONS of hidden units in deep neural networks
have revealed that human-interpretable concepts can

emerge as individual latent variables within those net-
works. For example, object detector units emerge within
networks trained to recognize places [1], part detectors
emerge in object classifiers [2] and object detectors emerge
in generative video networks [3]. This internal structure has
appeared in situations where the networks are not con-
strained to decompose problems in any interpretable way.

The emergence of interpretable structure suggests that
deep networks may be spontaneously learning disentangled
representations. While a network can learn an efficient
encoding that makes economical use of hidden variables to
distinguish between inputs, the appearance of a disen-
tangled representation is not well understood. A disen-
tangled representation aligns its variables with a meaningful
factorization of the underlying problem structure [4], or units
that have a semantic interpretation (a face, wheel, green
color, etc). Here, we address the following key issues:

� What is a disentangled representation of neural net-
works, and how can its factors be detected and
quantified?

� Do interpretable hidden units reflect a special align-
ment of feature space?

� What differences in network architectures, data sour-
ces, and training conditions lead to the internal rep-
resentations with greater or lesser entanglement?

We propose a general analytic framework, Network Dis-
section, for interpreting deep visual representations and
quantifying their interpretability. Using a broadly and
densely labeled dataset named Broden, our framework
identifies hidden units’ semantics for any given CNN, and
aligns them with interpretable concepts.

Building upon [5], we provide a description of the meth-
odology of Network Dissection in detail, and how it is used
to interpret deep visual representations trained with differ-
ent network architectures (AlexNet, VGG, GoogLeNet,
ResNet, DenseNet) and supervision tasks (ImageNet for
object recognition, Places for scene recognition, as well as
other self-taught supervision tasks). We show that interpret-
ability is an axis-aligned property of a representation that
can be destroyed by rotation without affecting discrimina-
tive power. We further examine how interpretability is
affected by different training datasets, training regulariza-
tions such as dropout [6] and batch normalization [7], as
well as fine-tuning between different data sources. Our
experiments reveal that units emerge as semantic detectors
in the intermediate layers of most deep visual representa-
tions, while the degree of interpretability can vary widely
across changes in architecture and training sets. We con-
clude that representations learned by deep networks are
more interpretable than previously thought, and that meas-
urements of interpretability provide insights about the
structure of deep visual representations that that are not
revealed by their classification power alone.1
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1.1 Related Work

Visualizing Deep Visual Representations. Though CNN mod-
els are often said to be black boxes, their behavior can be
visualized at the local individual unit level by sampling image
patches that maximize activation of hidden individual units
[1], [8], [9], or the global feature space level by using variants of
backpropagation to identify or generate salient image fea-
tures [10], [11]. Back-propagation together with a natural
image prior can be used to invert a CNN layer activation
[12], and an image generation network can be trained to
invert the deep features by synthesizing the input images
[13]. [14] further synthesizes the prototypical images for
individual units by learning a feature code for the image
generation network from [13]. These visualizations reveal
the visual patterns that have been learned and provide a
qualitative guide to unit interpretation. In [1], human evalu-
ation of visualizations is used to determine which individ-
ual units behave as object detectors in a network trained to
classify scenes. However, human evaluation is not scalable
to increasingly large networks such as ResNet [15]. Here,
we introduce a scalable method to go from qualitative visu-
alization to quantitative interpretation of large networks.

Analyzing the Properties of Deep Visual Representations. Much
work has studied the power of CNN layer activations as
generic visual features for classification [16], [17].While trans-
ferability of layer activations has been explored, higher layer
units remain most often specialized to the target task [18].
Susceptibility to adversarial input has shown that discrimina-
tive CNN models are fooled by particular visual patterns
[19], [20]. Analysis of correlation between different random
initialized networks reveals that many units converge to the
same set of representations after training [21]. The question of
how representations generalize has been investigated by
showing that a CNN can easily fit a random labeling of train-
ing data even under explicit regularization [22].

Unsupervised Learning of Deep Visual Representations.
Unsupervised learning or self-supervised learning works
exploit the correspondence structure that comes for free
from unlabeled images to train networks from scratch [23],
[24], [25], [26], [27]. For example, CNNs have been trained
by predicting image context [23], by colorizing gray images
[28], [29], by solving image puzzle [24], and by associating
the images with ambient sounds [30]. The resulting deep
visual representations learned from different unsupervised
learning tasks are compared by evaluating them to generic
visual features on classification datasets such as Pascal
VOC. Here, we provide an alternative approach to compare
deep visual representations in terms of their interpretability,
beyond their discriminative power.

2 FRAMEWORK OF NETWORK DISSECTION

The notion of a disentangled representation rests on human
perception of what it means for a concept to be mixed up.
Thus, we define the interpretability of deep visual represen-
tation as the degree of alignment with human-interpretable
concepts. Our quantitative measurement of interpretability
proceeds in three steps:

1) Identify a broad set of human-labeled visual concepts.
2) Gather the response of the hidden variables to

known concepts.

3) Quantify alignment of hidden variable�concept
pairs.

This three-step process of network dissection is reminiscent
of neuroscientists’ methods to characterize biological neu-
rons [31]. Since our purpose is to measure the level to which
a representation is disentangled, we focus on quantifying
the correspondence between a single latent variable and a
visual concept.

In a fully interpretable local coding such as a one-hot-
encoding, each variable will match with one human-
interpretable concept. Although we expect a network to learn
partially nonlocal representations in interior layers [4], as past
experience shows that an emergent concept will often align
with a combination of a several hidden units [2], [17], our aim
is to assess how well a representation is disentangled. There-
forewemeasure the alignment between single units and single
interpretable concepts. This does not gauge the discriminative
power of the representation; rather it quantifies its disen-
tangled interpretability. As we will show in Section 3.2, it is
possible for two representations of perfectly equivalent dis-
criminative power to have different levels of interpretability.

To assess the interpretability of CNNs, we draw concepts
from a new labeled image dataset that unifies visual con-
cepts from a heterogeneous collection of datasets, see
Section 2.1. We then measure the alignment of each CNN
hidden unit with each concept by evaluating the feature
activation of each individual unit as a segmentation model
for each concept. To quantify the interpretability of a whole
layer, we count the number of distinct concepts that are
aligned with a unit, as detailed in Section 2.2.

2.1 Broden: Broadly and Densely Labeled Dataset

To ascertain alignment with both low-level concepts such as
colors and higher-level concepts such as objects, we assem-
bled the Broadly andDensely Labeled Dataset (Broden) which
unifies several densely labeled image datasets: ADE [32],
OpenSurfaces [33], Pascal-Context [34], Pascal-Part [35], and
the Describable Textures Dataset [36]. These datasets contain
examples of a broad range of colors, materials, textures, parts,
objects and scenes. Most examples are segmented down to
the pixel level except textures and scenes, which cover full
images. Every pixel is also annotated automatically with one
of eleven color names commonly used by humans [37].

Broden provides a ground truth set of exemplars for a set
of visual concepts (see examples in Fig. 1). The concept labels
in Broden are merged from their original datasets so that
every class corresponds to an English word. Labels are
merged based on shared synonyms, disregarding positional
distinctions such as ‘left’ and ‘top’ and avoiding a blacklist of
29 overly general synonyms (such as ‘machine’ for ‘car’).Mul-
tiple Broden labels can apply to the same pixel. A pixel that
has the Pascal-Part label ‘left front cat leg’ has three labels in
Broden: a unified ‘cat’ label representing cats across datasets;
a similar unified ‘leg’ label; and the color label ‘black’. Only
labels with at least 10 samples are included. Table 1 shows the
number of classes per dataset and the average number of
image samples per label class, for a total of 1197 classes.

2.2 Scoring Unit Interpretability

The proposed network dissection method evaluates every
individual convolutional unit in a CNN as a solution to a
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binary segmentation task to every visual concept in Broden
(see Fig. 3). Our method can be applied to any CNN using a
forward pass without the need for training or backpropaga-
tion. For every input image x in the Broden dataset, the acti-
vation map AkðxÞ of every internal convolutional unit k is
collected. Then the distribution of individual unit activa-
tions ak is computed. For each unit k, the top quantile level
Tk is determined such that P ðak > TkÞ ¼ 0:005 over every
spatial location of the activation map in the dataset.

To compare a low-resolution unit’s activation map to the
input-resolution annotation mask Lc for some concept c, the
activation map is scaled up to the mask resolution SkðxÞ
from AkðxÞ using bilinear interpolation, anchoring interpo-
lants at the center of each unit’s receptive field.

SkðxÞ is then thresholded into a binary segmentation:
MkðxÞ � SkðxÞ � Tk, selecting all regions for which the acti-
vation exceeds the threshold Tk. These segmentations are
evaluated against every concept c in the dataset by comput-
ing intersectionsMkðxÞ \ LcðxÞ, for every ðk; cÞ pair.

The score of each unit k as segmentation for concept c is
reported as a the Intersection over Union score (IoU) across
all the images in the dataset,

IoUk;c ¼
P jMkðxÞ \ LcðxÞjP jMkðxÞ [ LcðxÞj ; (1)

where j � j is the cardinality of a set. Because the dataset con-
tains some types of labels which are not present on some
subsets of inputs, the sums are computed only on the subset
of images that have at least one labeled concept of the same
category as c. The value of IoUk;c is the accuracy of unit k in
detecting concept c; we consider one unit k as a detector for
concept c if IoUk;c exceeds a threshold (> 0:04). Our qualita-
tive results are insensitive to the IoU threshold: different
thresholds denote different numbers of units as concept
detectors across all the networks but relative orderings
remain stable. Given that one unit might be the detector for
multiple concepts, here we choose the top ranked label. To
quantify the interpretability of a layer, we count the number
of unique concepts aligned with units, i.e., unique detectors.

Fig. 2 summarizes the whole process of scoring unit
interpretability: By segmenting the annotation mask using
the receptive field of units for the top activated images, we
compute the IoU for each concept. Importantly, the IoU
which evaluates the quality of the segmentation of a unit is an
objective confidence score for interpretability that is compara-
ble across networks, enabling us to compare interpretability of
different representations and so lays the basis for the experi-
ments below. Note that network dissection results depends
on the underlying vocabulary: if a unit matches a human-
understandable concept that is absent from Broden, that unit
will not score well for interpretability. Future versions of Bro-
denwill include a larger vocabulary of visual concepts.

3 EXPERIMENTS OF INTERPRETING DEEP VISUAL

REPRESENTATIONS

In this section, we conduct a series of experiments to inter-
pret the internal representations of deep visual representa-
tions. In Section 3.1, we validate our method using human
evaluation. In Section 3.2 we use random unitary rotations
of a learned representation to test whether interpretability
of CNNs is an axis-independent property; we find that it is
not, and we conclude that interpretability is not an inevita-
ble result of the discriminative power of a representation. In
Section 3.3 we analyze all the convolutional layers of Alex-
Net as trained on ImageNet [38] and Places [39]. We confirm
that our method reveals detectors for higher-level semantic
concepts at higher layers and lower-level concepts at lower
layers; and that more detectors for higher-level concepts
emerge under scene training. Then, we show that different
network architectures such as AlexNet, VGG, and ResNet

TABLE 1
Statistics of Each Label Type Included in the Dataset

Category Classes Sources Avg sample

scene 468 ADE [32] 38
object 584 ADE [32], Pascal-Context [34] 491
part 234 ADE [32], Pascal-Part [35] 854
material 32 OpenSurfaces [33] 1,703
texture 47 DTD [36] 140
color 11 Generated 59,250

Fig. 1. Samples from the Broden Dataset. The ground truth for each concept is a pixel-wise dense annotation.

Fig. 2. Scoring unit interpretability by evaluating the unit for semantic
segmentation.
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yield different interpretability, and differently supervised
training tasks and self-supervised training tasks also yield a
variety of levels of interpretability in Section 3.4. Addition-
ally in Section 3.5 we show the interpretability of model
trained from captioning images. Another set of experiments
shows the impact of different training conditions in Section
3.6 and what happens during the transfer learning in
Section 3.7. We further examine the relationship between
discriminative power and interpretability in Section 3.9,
and investigate a possible way to improve the interpretabil-
ity of CNNs by increasing their width in Section 3.8. Finally
in Section 3.10, we utilize the interpretable units as explana-
tory factors to the prediction given by a CNN.

For testing we used CNN models with different architec-
tures and primary tasks (Table 2), including AlexNet [38],
GoogLeNet [40], VGG [41], ResNet [15], and DenseNet [42].
For supervised training, the models are trained from scratch
(i.e., not pretrained) on ImageNet [43], Places205 [39], and
Places365 [44]. ImageNet is an object-centric dataset, which
contains 1.2 million images from 1000 object classes. Pla-
ces205 (2.4 million images from 205 scene classes) and Pla-
ces365 (1.6 million images from 365 scene classes) are two
subsets the scene-centric dataset Places.“Hybrid” network
refers to a combination of ImageNet and Places365. The
self-supervised networks are introduced in Section 3.4.

3.1 Human Evaluation of Interpretations

Using network dissection, we analyzed the interpretability
of units within all the convolutional layers of Places-

AlexNet and ImageNet-AlexNet, then compared with
human interpretation. Places-AlexNet is trained for scene
classification on Places205 [39], while ImageNet-AlexNet is
the identical architecture trained for object classification on
ImageNet [38].

Our evaluation was done by raters on Amazon Mechani-
cal Turk (AMT). As a baseline, we used the descriptions
from [1], where three independent raters wrote short phrases
and gave a confidence score, to describe the meaning of a
unit, based on seeing the top image patches for that unit. As
a canonical description. we chose the most common descrip-
tion of a unit (when raters agreed), and the highest-
confidence description (when raters did not agree). To iden-
tify non-interpretable units, raters were shown the canonical
descriptions of visualizations and asked whether the
description was valid. Units with validated descriptions are
taken as interpretable units. To compare these baseline
descriptions to network-dissection-derived labels, raters
were shown a visualization of top images patches for an
interpretable unit, along with a word or short phrase, and
asked to vote (yes/no) whether the phrase was descriptive
of most of the patches (Fig. 4). The baseline human-written
descriptions were randomized with the labels from net

Fig. 3. Illustration of network dissection for measuring semantic alignment of units in a given CNN. Here one unit of the last convolutional layer of a
given CNN is probed by evaluating its performance on various segmentation tasks. Our method can probe any convolutional layer.

TABLE 2
Collection of Tested CNN Models

Training Network dataset or task

none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.
VGG-16 ImageNet, Places205, Places365, Hybrid.

ResNet-152 ImageNet, Places365.
DenseNet-161 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,
tracking, moving, videoorder,

audio, crosschannel,colorization.
objectcentric, transinv.

Fig. 4. The annotation interface used by human raters on Amazon
Mechanical Turk. Raters are shown descriptive text in quotes together
with fifteen images, each with highlighted patches, and must evaluate
whether the quoted text is a good description for the highlighted patches.
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dissection, and the origin of the labelswas not revealed to the
raters. Table 3 summarizes the results. The number of inter-
pretable units is shown for each layer and type of descrip-
tion. As expected, color and texture concepts dominate in the
lower layers conv1 and conv2 while part, object and scene
detectors are more frequent at conv4 and conv5. Average
positive votes for descriptions of interpretable units are
shown, both for human-written labels and network-dissec-
tion-derived labels. Human labels are most highly consistent
for units of conv5, suggesting that humans have no trouble
identifying high-level visual concept detectors, while lower-
level detectors, particularly textures, are more difficult to
label. Similarly, labels given by network dissection are best
at conv5 and for high-level concepts, and are found to be

less descriptive for lower layers and textures. In Fig. 5, a sam-
ple of units is shown together with both automatically
inferred interpretations and manually assigned interpreta-
tions taken from [1]. The predicted labels match the human
annotation well, though sometimes they capture a different
description of a concept, like the ‘crosswalk’ predicted by the
algorithm compared to ‘horizontal lines’ given by human for
the third unit in conv4 of Places-AlexNet in Fig. 5.

3.2 Measurement of Axis-Aligned Interpretability

Two hypotheses can explain the emergence of interpretabil-
ity in individual hidden layer units:

Hypothesis 1. Interpretability is a property of the
representation as a whole, and individual interpret-
able units emerge because interpretability is a generic
property of typical directions of representational
space. Under this hypothesis, projecting to any direc-
tion would typically reveal an interpretable concept,
and interpretations of single units in the natural basis
would not be more meaningful than interpretations
that can be found in any other direction.
Hypothesis 2. Interpretable alignments are unusual,
and interpretable units emerge because learning con-
verges to a special basis that aligns explanatory fac-
tors with individual units. In this model, the natural
basis represents a meaningful decomposition learned
by the network.

Hypothesis 1 is the default assumption: in the past it has
been found [19] that with respect to interpretability “there is
no distinction between individual high level units and ran-
dom linear combinations of high level units.” Network dis-
section allows us to re-evaluate this hypothesis. Thus, we
conduct an experiment to determinewhether it is meaningful
to assign an interpretable concept to an individual unit. We
apply random changes in basis to a representation learned by
AlexNet. Under hypothesis 1, the overall level of interpret-
ability should not be affected by a change in basis, even as

TABLE 3
Human Evaluation of Our Network Dissection Approach

conv1 conv2 conv3 conv4 conv5

Interpretable units 57/96 126/256 247/384 258/384 194/256
color units 36 45 44 19 12
texture units 19 53 64 72 23
material units 0 2 2 9 8
part units 0 0 13 17 16
object units 2 22 109 127 114
scene units 0 4 15 14 21

Human consistency 82% 76% 83% 82% 91%
on color units 92% 80% 82% 84% 100%
on texture units 68% 81% 83% 81% 96%
on material units n/a 50% 100% 78% 100%
on part units n/a n/a 92% 94% 88%
on object units 50% 68% 84% 83% 90%
on scene units n/a 25% 67% 71% 81%

Network Dissection 37% 56% 54% 59% 71%
on color units 44% 53% 55% 42% 67%
on texture units 26% 58% 42% 54% 39%
on material units n/a 50% 50% 89% 75%
on part units n/a n/a 85% 71% 75%
on object units 0% 59% 57% 65% 75%
on scene units n/a 50% 53% 29% 86%

Fig. 5. Comparison of the interpretability of the convolutional layers of AlexNet, trained on classification tasks for Places (top) and ImageNet (bottom).
Four units in each layer are shown with their semantics. The segmentation generated by each unit is shown on the three Broden images with highest
activation. Top-scoring labels are shown above to the left, and human-annotated labels are shown above to the right. There is some disagreement:
for example, raters mark the first conv4 unit on Places as a ‘windows’ detector, while the algorithm matches the ‘chequered’ texture.
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rotations cause the specific set of represented concepts to
change. Under hypothesis 2, the overall level of interpretabil-
ity is expected to drop under a change in basis.

We begin with the representation of the 256 convolutional
units of AlexNet conv5 trained on Places205 and examine
the effect of a change in basis. To avoid any issues of condi-
tioning or degeneracy, we change basis using a random
orthogonal transformation Q. The rotation Q is drawn
uniformly from SOð256Þ by applying Gram-Schmidt on a

normally-distributed QR ¼ A 2 R2562 with positive-diagonal
right-triangular R, as described by [45]. Interpretability is
summarized as the number of unique visual concepts aligned
with units, as defined in Section 2.2.

Denoting AlexNet conv5 as fðxÞ, we found that the num-
ber of unique detectors in QfðxÞ is 80 percent fewer than the
number of unique detectors in fðxÞ. Our finding is inconsis-
tent with hypothesis 1 and consistent with hypothesis 2.

We also tested smaller perturbations of basis usingQa for
0 � a � 1, where the fractional powers Qa 2 SOð256Þ are
chosen to form a minimal geodesic gradually rotating from
I to Q; these intermediate rotations are computed using a
Schur decomposition. Fig. 6 shows that interpretability of

QafðxÞ decreases as larger rotations are applied. Fig. 7
shows some examples of the linearly combined units.

Each rotated representation has the same discriminative
power as the original layer. Writing the original network as
gðfðxÞÞ, note that g0ðrÞ � gðQTrÞ defines a neural network
that processes the rotated representation r ¼ QfðxÞ exactly
as the original g operates on fðxÞ. Furthermore, we verify
that a network can learn to solve a task given a rotated
representation. Starting with AlexNet trained to solve pla-
ces365, we freeze the bottom layers up to pool5 and retrain
the top layers of the network under two conditions: one in
which the representation at pool5 is randomly rotated
(a ¼ 1) before passing to fc6, and the other where the
representation up to pool5 is left unchanged. Then we reini-
tialize and retrain the fc6-fc8 layers of an AlexNet on pla-
ces365. Under both the unrotated and rotated conditions,
reinitializing and retraining the top layers improves perfor-
mance, and the improvement is similar regardless of
whether the pool5 representation is rotated. Initial accu-
racy is 50.3 percent. After retraining the unrotated represen-
tation, accuracy improves to 51.9 percent; after retraining
the rotated representation, accuracy is 51.7 percent. Thus
the network learns to solve the task even when the represen-
tation is randomly rotated. Since a network can be trans-
formed into an equivalent network with the same
discriminative ability but with lower interpretability, we
conclude that interpretability must be measured separately
from discrimination ability.

We repeated the measurement of interpretability upon
complete rotation (a ¼ 1) on Places365 and ImageNet 10
times; see results in Fig. 8. There is a drop of interpretability
for both. Alexnet on Places365 drops more, which can be
explained due to that network starting with a higher num-
ber of interpretable units.

3.3 Network Architectures with
Supervised Learning

How do different network architectures affect disentangled
interpretability of the learned representations? For simplic-
ity, the following experiments focus on the last convolu-
tional layer of each CNN, where semantic detectors
emerge most.

Results showing the number of unique detectors that
emerge from various network architectures trained on
ImageNet and Places, and the ratio of unique detectors (the
number of unique detectors normalized by the total number
of units at that layer) are plotted in Fig. 9. Interpretability in
terms of the number of unique detectors, can be compared
as follows: ResNet > DenseNet > VGG > GoogLeNet >

Fig. 6. Interpretability over changes in basis of the representation of
AlexNet conv5 trained on Places. The vertical axis shows the number
of unique interpretable concepts that match a unit in the representation.
The horizontal axis shows a, which quantifies the degree of rotation.

Fig. 7. Visualizations of the best single-unit concept detectors of five
concepts taken from individual units of AlexNet conv5 trained on Places
(left), compared with the best linear-combination detectors of the same
concepts taken from the same representation under a random rotation
(right). For most concepts, both the IoU and the visualization of the top
activating image patches confirm that individual units match concepts
better than linear combinations. In other cases, (e.g., head detectors)
visualization of a linear combination appears highly consistent, but the
IoU reveals lower consistency when evaluated over the whole dataset.

Fig. 8. Complete rotation (a ¼ 1) repeated on AlexNet trained on Pla-
ces365 and ImageNet respectively. Rotation reduces the interpretability
significantly for both of the networks.
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AlexNet. Deeper architectures seem to have greater
interpretability, though individual layer structure is differ-
ent across architectures. Comparing training datasets, we
find Places > ImageNet. As discussed in [1], scenes are
composed of multiple objects, with more object detectors
emerging in CNNs trained to recognize places. In terms of
ratio of unique detectors, VGG architecture is highest. We
consider the number of unique detectors as the metric of
interpretability for a network as it better measures the diver-
sity and coverage of emergent interpretable concepts.

Fig. 10 shows the plot of average IoU versus the number
of detectors for the object detectors in Resnet152 trained on
Places and ImageNet. Note the weak positive correlation
between the two (r = 0.08), i.e, the higher average IoU the
more detectors for that class.

Fig. 11 shows some object detectors grouped by object cat-
egories. For the same object category, the visual appearance

Fig. 9. Interpretability across different architectures trained on ImageNet
and Places. Plot above shows the number of unique detectors, plot
below shows the ratio of unique detectors (number of unique detectors
divided by the total number of units).

Fig. 10. Average IoU versus the number of detectors for the object class
in Resnet152 trained on Places and ImageNet respectively. For a set of
units detecting the same object class, we average their IoU.

Fig. 11. Comparison of several visual concept detectors identified by network dissection in DenseNet, ResNet, GoogLeNet, VGG, and AlexNet. Each
network is trained on Places365. The two highest-IoU matches among convolutional units of each network is shown. The segmentation generated by
each unit is shown on the four maximally activating Broden images. Some units activate on concept generalizations, e.g., GoogLeNet 4e’s unit 225
on horses and dogs, and 759 on white ellipsoids and jets.
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of the unit as detector varies within the same network and
across different networks. DenseNet and ResNet have such
good detectors for bus and airplane with IoU > 0:25. Fig. 12
compares interpretable units on a variety of training tasks.

Fig. 13 shows the interpretable detectors for different
layers and network architectures trained on Places365.
More object and scene detectors emerge at the higher layers
across all architectures, suggesting that representational
ability increases with layer depth.

Because of the compositional structure of the CNN layers,
the deeper layers should have higher capacity to represent
concepts with larger visual complexity such as objects and
scene parts. Our measurements confirm this, and we con-
clude that higher network depth encourages the emergence
of visual concepts with higher semantic complexity.

3.4 Representations from Self-Supervised Learning

Recently several works have explored a novel paradigm for
unsupervised learning of CNNs without using millions of
annotated images, namely self-supervised learning. Here, we
investigated 12 networks trained for different self-supervised
learning tasks: for predicting context (context) [23], solving
puzzles (puzzle) [24], predicting ego-motion (egomo-
tion) [25], learning by moving (moving) [26], predicting
video frame order (videoorder) [46] or tracking (track-
ing) [27], detecting object-centric alignment (objectcen-
tric) [47], colorizing images (colorization) [28],
inpainting (contextencoder) [48], predicting cross-chan-
nel (crosschannel) [29], predicting ambient sound from
frames (audio) [30], and tracking invariant patterns in videos
(transinv) [49]. The self-supervised models all used Alex-
Net or an AlexNet-derived architecture, with one exception
model transinv [49], which uses VGG as the base network.

How do different supervisions affect internal representa-
tions? We compared the interpretability resulting from self-
supervised learning and supervised learning. We kept the
network architecture to AlexNet for each model (one excep-
tion is the recent model transinv which uses VGG as the
base network). Results are shown in Fig. 14: training on
Places365 creates the largest number of unique detectors.
Self-supervised models create many texture detectors but
relatively few object detectors; apparently, supervision

Fig. 12. Comparison of unique detectors of all types on a variety of train-
ing tasks. More results, including comparisons across architectures, are
at the project page.

Fig. 13. Comparison of interpretability of the layers for AlexNet, VGG16, GoogLeNet, and ResNet152 trained on Places365. All five conv layers of
AlexNet and the selected layers of VGG, GoogLeNet, and ResNet are included. Plot above shows the number of unique detectors and the plot below
show the ratio of unique detectors.
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from a self-taught primary task is much weaker at inferring
interpretable concepts than supervised training on a large
annotated dataset. The form of self-supervision makes a dif-
ference: for example, the colorization model is trained on
colorless images, and almost no color detection units
emerge. This suggests that emergent units represent con-
cepts required to solve a primary task.

Fig. 15 shows typical detectors identified in the self-
supervisedCNNmodels. For themodelsaudio and puzzle,
some part and object detectors emerge. Those detectors may
be useful for CNNs to solve primary tasks: the audio model
is trained to associate objects with a sound source, so it may
be useful to recognize people and cars; while the puzzle

model is trained to align the different parts of objects and
scenes in an image. For colorization and tracking, rec-
ognizing texturesmight be good enough for the CNN to solve
primary tasks such as colorizing a desaturated natural image;
thus it is unsurprising that the texture detectors dominate.

3.5 Representations from Captioning Images

To further compare supervised learning and self-supervised
learning, we trained a CNN from scratch using the supervi-
sion of captioning images, which generates natural language
sentence to describe contents. We used the image captioning
data from COCO dataset [50], with five captions per image.
We then trained a CNN plus LSTM as the image captioning
model similar to [51]. Features of ResNet18 are used as input
to the LSTM for generating captions. The CNN+LSTM archi-
tecture and the network dissection results on the last convo-
lutional layer of the ResNet18 are shown in Fig. 16: Many

object detectors emerge, suggesting that supervision from
natural language captions contains high-level semantics.

3.6 Training Conditions

The number of training iterations, dropout [6], batch nor-
malization [7], and random initialization [21], are known to
affect the representation learned by neural networks. To
analyze the effect of training conditions on interpretability,
we took Places205-AlexNet as the baseline model and pre-
pared several variants of it, all using the same AlexNet
architecture. For the variants Repeat1, Repeat2 and Repeat3,
we randomly initialized the weights and trained them with
the same number of iterations. For the variant NoDropout,
we removed the dropout in the FC layers of the baseline
model. For the variant BatchNorm, we applied batch normal-
ization at each convolutional layer of the baseline model.
Repeat1, Repeat2, Repeat3 all have nearly the same top-1 accu-
racy 50.0 percent on the validation set. The variant without
dropout has top-1 accuracy 49.2 percent. The variant with
batch norm has top-1 accuracy 50.5 percent.

Fig. 17 shows the results: 1) Comparing different random
initializations, the models converge to similar levels of
interpretability, both in terms of unique detector number
and total detector number; this matches observations of con-
vergent learning discussed in [21]. 2) For the network with-
out dropout, more texture detectors but fewer object
detectors, emerge. 3) Batch normalization seems to decrease
interpretability significantly.

Fig. 14. Semantic detectors emerge across different supervision of the
primary training task. All these models use the AlexNet architecture and
are tested at conv5.

Fig. 15. The top ranked concepts in the three top categories in four self-
supervised networks. Some object and part detectors emerge in audio.
Detectors for person heads also appear in puzzle and coloriza-

tion. A variety of texture concepts dominate models with self-super-
vised training.

Fig. 16. Example images in the COCO captioning dataset, the CNN
+LSTM image captioning model, and the network dissection result.
Training ResNet18 from scratch using the supervision from captioning
images leads to a lot of emergent object detectors.

Fig. 17. Effect of regularizations on the interpretability of CNNs.
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The batch normalization result serves as a caution that
discriminative power is not the only property of a represen-
tation that should be measured. Our intuition here is that the
batch normalization ‘whitens’ the activation at each layer,
which smooths out scaling issues and allows a network to
easily rotate axes of intermediate representations during
training.While whitening apparently speeds training, it may
also have an effect similar to random rotations analyzed in
Section 3.2 which destroy interpretability. As discussed in
Section 3.2, however, interpretability is neither a prerequisite
nor an obstacle to discriminative power. Finding ways to
capture the benefits of batch normalization without destroy-
ing interpretability is an important area for future work.

Fig. 18 plots the interpretability of snapshots of the base-
line model at different training iterations along with the
accuracy on the validation set. We can see that object detec-
tors and part detectors begin emerging at about 10,000 itera-
tions (each iteration processes a batch of 256 images). We do
not find evidence of transitions across different concept cat-
egories during training. For example, units in conv5 do not
turn into texture or material detectors before becoming
object or part detectors. In Fig. 19, we keep track of six units
over different training iteration. We observe that some units
start converging to the semantic concept at early stage. For
example, unit138 starts detecting mountain snowy as early
as at iteration 2446. We also observe that units evolve over

time: unit74 and unit108 detect road first before they start
detecting car and airplane respectively.

3.7 Transfer Learning between Places
and ImageNet

Fine-tuning a pre-trained network to a target domain is
commonly used in transfer learning. The deep features
from the pre-trained network show good generalization
across different domains. The pre-trained network also
makes the training converge faster and results in better
accuracy, especially if there is not enough training data for
the target domain. Here we analyze how unit interpretation
evolv during transfer learning.

To see how individual units evolve across domains, we
run two experiments: fine-tuning Places-AlexNet to Image-
Net and fine-tuning ImageNet-AlexNet to Places. The
interpretability results of the model checkpoints at different
fine-tuning iteration are plotted in Fig. 20. The training
indeed converges faster compared to the network trained
from scratch on Places in Fig. 18. The interpretations of the
units also change over fine-tuning. For example, the number
of unique object detectors first drop then keep increasing for
the network trained on ImageNet being fine-tuned to Pla-
ces365, while it is slowly dropping for the network trained
on Places being fine-tuned to ImageNet.

Fig. 21 shows some examples of the individual unit evo-
lution happening in the networks trained from ImageNet to
Places365 and from Places365 to ImageNet, at the beginning
and at the end of fine-tuning. In the ImageNet to Places365
network, unit15 which detects white dogs initially, evolves
to detect waterfall; unit136 and unit144 which detect dogs
first, evolve to detect horse and cow respectively (note a lot
of scene categories in Places like pasture and corral contain

Fig. 18. The evolution of the interpretability of conv5 of Places205-Alex-
Net over 3,000,000 training iterations. The accuracy on the validation at
each iteration is also plotted. The baseline model is trained to 300,000
iterations (marked at the red line).

Fig. 19. The interpretations of units change over iterations. Each row shows the interpretation of one unit.

Fig. 20. a) Fine-tune AlexNet from ImageNet to Places365. b) Fine-tune
AlexNet from Places365 to ImageNet.
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these animals). In the Places365 to ImageNet network, sev-
eral units evolve to be dog detectors, given ImageNet distri-
bution of categories. While units evolve to detect different
concepts, the before and after- concepts often share low-
level image similarity such as colors and textures.

The fine-tuned model achieves almost the same classifi-
cation accuracy as the train-from-scratch model, but the
training converges faster due to the feature reuse. For
the ImageNet to Places network, 139 out of 256 units
(54.4 percent) at conv5 layer keep the same concepts dur-
ing the finetuning, while for the network fine-tuned from
Places to ImageNet, 135 out of 256 units (52.7 percent) at
conv5 stay have the same concepts. We further catego-
rized the unit evolution into five types based on the simi-
larity between the concepts before and after fine-tuning.
Out of the 117 units which evolved in the network fine-
tuned from Imagenet to Places, 47 units keep a similar
type of shape, 31 units have a similar texture, 18 units
have similar colors, 13 units have a similar type of object,
and 8 units do not have a clear pattern of similarities (see
Fig. 22). Fig. 23 illustrates the evolution history for two
units of each model. Units can switch their top ranked
label several times before converging to a concept: unit15
in the fine-tuning of ImageNet to Places365 flipped to
white, crystalline, before stabilizing to a waterfall concept.
Other units converge earlier: unit132 in the fine-tuning of
Places365 to ImageNet goes from hair to dog at an early
stage of fine-tuning.

3.8 Layer Width versus Interpretability

From AlexNet to ResNet, CNNs have grown deeper in the
quest for higher classification accuracy. Depth is important
for high discrimination ability, and as shown in Section 3.3,
interpretability increases with depth. However, the role of
the width of layers (the number of units per layer) has been
less explored. One reason is that increasing the number of
convolutional units in a layer significantly increases compu-
tational cost while yielding only marginal classification
accuracy improvements. Nevertheless, some recent work
[52] suggests that a carefully designed wide residual net-
work can achieve classification accuracy superior to the
commonly used thin and deep counterparts.

To test how width affects emergence of interpretable
detectors, we removed the FC layers of AlexNet, then tripled
the number of units at the conv5, i.e., from 256 to 768 units,
asAlexNet-GAP-Wide. We further tripled the number of units
for all the previous conv layers except conv1 for the standard
AlexNet, as AlexNet-GAP-WideAll. Finally we put a global
average pooling layer after conv5 and fully connected the
pooled 768-feature activations to the final class prediction.
After training on Places365, the AlexNet-GAP-Wide and the
AlexNet-GAP-WideAll have similar classification accuracy
on the validation set as the standard AlexNet (� 0:5 percent
top1 accuracy lower and higher): however many more
emergent unique concept detectors at conv5 are found for
AlexNet-GAP-Wide and all the conv layers for AlexNet-
GAL-WideAll (see Fig. 24). Increasing the number of units to
1024 and 2048 at conv5, did not significantly increase the
unique concepts. This may indicate either a limit on the
capacity of AlexNet to separate explanatory factors, or a limit
on the number of disentangled concepts that are helpful to
solve the primary task of scene classification.

3.9 Discrimination versus Interpretability

Activations from the higher layers of pre-trained CNNs are
often used as generic visual features (noted as deep fea-
tures), generalizing well to other image datasets [16], [39]. It
is interesting to bridge the notion of generic visual features
with their interpretability. Here we first benchmarked the
deep features from several networks on several image clas-
sification datasets for their discriminative power. For each

Fig. 22. Examples from four types of unit evolutions. Types are defined
based on the concept similarity.

Fig. 23. The history of one unit evolution during the fine-tuning from
ImageNet to Places365 (top) and Places365 to ImageNet (low).

Fig. 21. Units evolve from a) the network fine-tuned from ImageNet to
Places365 and b) the network fine-tuned from Places365 to ImageNet.
Six units are shown with their semantics at the beginning of the fine-tun-
ing and at the end of the fine-tuning.
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network, we fed in the images and extracted the activation
at the last convolutional layer as the visual feature. Then we
trained a linear SVM with C ¼ 0:001 on the train split and
evaluated the performance on the test split. We computed
the classification accuracy averaged across classes, see
Fig. 25. We include indoor67 [53], sun397 [54] and cal-
tech256 [55]. The deep features from supervised trained net-
works perform much better than the ones from the self-
supervised trained networks. Networks trained on Places
have better features for scene-centric datasets (sun397 and
indoor67), while networks trained on ImageNet have better
features for object-centric datasets (caltech256).

Fig. 26 plots the number of the unique object detectors for
each representation over that representation’s classification
accuracy on three selected datasets. There is positive correla-
tion between them suggesting that the supervision tasks that
encourage the emergence of more concept detectors may
also improve the discrimination ability of deep features.
Interestingly, on some of the object centric dataset, the best
discriminative representation is the representation from
ResNet152-ImageNet, which has fewer unique object detec-
tors compared to the ResNet152-Places365. We hypothesize
that the accuracy on a representation when applied to a task
is dependent not only on the number of concept detectors in
the representation, but on how well the concept detectors
captures the characteristics of the hidden factors in the trans-
ferred dataset.

3.10 Explaining the Predictions for the
Deep Features

After we interpret the units inside the deep visual represen-
tation, we show that the unit activation along with the inter-
preted label can be used to explain the prediction given by
the deep features. Previous work [56] uses the weighted
sum of the unit activation maps to highlight which image

regions are most informative to the prediction; here we fur-
ther decouple at individual unit level to segment the infor-
mative image regions.

We use the individual units identified as concept detec-
tors to build an explanation of the individual image predic-
tion given by a classifier. The procedure is as follows: Given
any image, let the unit activation of the deep feature (for
ResNet the GAP activation) be ½x1; x2; :::; xN 	, where each xn

represents the value summed up from the activation map of
unit n. Let the top prediction’s SVM response be s ¼P

n wnxn, where ½w1; w2; :::; wN 	 is the SVM’s learned weight.
We get the top ranked units in Fig. 27 by ranking
½w1x1; w2x2; :::; wNxN 	, which are the unit activations
weighted by the SVM weight for the top predicted class.
Then we simply upsample the activation map of the top
ranked unit to segment the image. The threshold used for
segmentation is the top 0.2 activation of the unit based on
the feature map of the single instance.

Image segmentations using individual unit activation on
action40 [57] dataset are plotted in Fig. 27a. The unit segmen-
tation explain the prediction explicitly. For example, the pre-
diction for the first image is Gardening, and the explanatory
units detect person, arm, plate, pottedplant. The prediction
for the second image is Fishing, the explanatory units detect
person, tree, river, water. We also plot some incorrectly pre-
dicted samples in Fig. 27b. The segmentation gives the intui-
tion as to why the classifier made mistakes. For example, for
the first image the classifier predicts cutting vegetables rather
than the true label gardening, because the second unit incor-
rectlymistakes the ground as table.

4 DISCUSSION

We discuss the threshold t and the potential biases in the
interpretation given by our approach below.

Influence of the Threshold t. Our choice of a tight threshold t

is done to reveal information about fine-grained concept

Fig. 24. Comparison of the standard AlexNet, AlexNet-GAP-Wide, and
AlexNet-GAP-WideAll. Widening the layer brings the emergence of
more detectors. Networks are trained on Places365. Plot above shows
the number of unique detectors, plot below shows the ratio of unique
detectors.

Fig. 25. The classification accuracy of deep features on the three image
datasets.
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selectivity of individual units. The effect of choosing tighter
and looser t on the interpretation of units across a whole
representation is shown in Fig. 28. A t smaller than 0.005
identifies fewer objects because some objects will be missed
by the small threshold. On the other hand, a larger t, or using
no threshold at all, associates units with general concepts
such as colors, textures, and large regions, rather than captur-
ing the sensitivity of units on more specific concepts. Fig. 29

shows the effect of varying t on specific units’ IoU. Although
the two units are sensitive to paintings and horses, respec-
tively, they are also both generally sensitive to the color
brown when considered at a larger t. The tight t ¼ 0:005
reveals the sensitivity of the units to fine-grained concepts.

Potential Biases in the Interpretations. Several potential
biases might occur to our method as follows: 1) Our method
will not identify units that detect concepts that do not
appear in the Broden dataset, including some difficult-
to-name concepts such as ‘the corner of a room’; 2) Some
units might detect a very fine-grained concept, such as a

Fig. 26. The number of unique object detectors in the last convolutional layer compared to each representations classification accuracy on three
datasets. Supervised (in red) and unsupervised (in green) representations clearly form two clusters.

Fig. 27. Segmenting images using top activated units weighted by the class label from ResNet152-Places365 deep feature. a) the correctly predicted
samples. b) the incorrectly predicted samples.

Fig. 28. Labels that appear in Alexnet-conv5 on Places205 as t is varied
from 0.0025 to 0.04. At wider thresholds, more units are assigned to
labels for generic concepts such as colors and textures.

Fig. 29. Typical relationships between t and IoU for different labels. In (c)
and (d), IoU is shown on the y axis and t is on the x axis, and every con-
cept in Broden which maximizes IoU for some t is shown. For loose
thresholds, the same general concept “brown color” maximizes IoU for
both units even though the units have remarkable distinctive selectivity
at tighter thresholds.
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wooden stool chair leg, which are more specific than con-
cepts in Broden, thus yielding a low IoU on the ‘chair’ cate-
gory. Such units might not be counted as a concept detector.
3) Our method measures the degree of alignment between
individual unit activations and a visual concept, so it will
not identify a group of units that might jointly represent
one concept; 4) Units might not be centered within their
receptive fields so that the upsampled activation maps may
be misaligned by a few pixels. 5) The “number of unique
detectors” metric might favor large networks in comparing
their network interpretability.

5 CONCLUSION

Network Dissection translates qualitative visualizations of
representation units into quantitative interpretations and
measurements of interpretability.Herewe show that the units
of a deep representation are significantly more interpretable
than expected for a basis of the representation space. We
investigate the interpretability of deep visual representations
resulting from different architectures, training supervisions,
and training conditions. We also show that interpretability of
deep visual representations is relevant to the power of the
representation as a generalizable visual feature. We conclude
that interpretability is an important property of deep neural
networks that provides new insights into their hierarchical
structure. Our work motivates future work towards building
more interpretable and explainableAI systems.
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