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extensively studied in primates in the past de cades. For 
instance, low- level image properties, such as contrast, 
edges, and orientations, are pro cessed within V1, V2, 
and V3; object form, shape, and physical size elicit 
stronger responses in the lateral occipital cortex, or 
LOC (Grill- Spector et al., 1999; Konkle & Oliva, 2012; 
Malach et al., 1995); images representing a layout, such 
as a scene or space, elicit stronger responses in the 
parahippocampal gyrus (Epstein & Kanwisher, 1998).

The temporal dynamics reflecting how  these regions 
respond to an object or place suggest that the neural 
repre sen ta tion quickly passes through serial computa-
tions (Grill- Spector & Weiner, 2014). Neural responses 
first emerge in the occipital pole (V1, V2, V3) within 
80–100 ms of viewing. Responses then spread rapidly and 
progressively in the anterior direction along the ventral 
stream (i.e., the LOC, ventral occipital cortex, temporal 
occipital cortex, and parahippocampal cortex) and the 
dorsal stream (intraparietal sulcus regions) within 110–
170 ms  after image onset (Cichy, Pantazis, & Oliva, 2016a).

 These pro cessing stages, particularly  those in the 
ventral stream pathway, have inspired a class of compu-
tational models named deep (convolutional) neural 
networks (deep CNNs or DNNs).  These models are 
quickly gaining popularity as a tool for the hypothesis 
testing of brain computations by providing simplified 
artificial network streams. What are DNNs and how can 
they be used to evaluate the computations performed 
within a biological brain?

Artificial Neural Networks

What is an artificial DNN? Artificial neural networks 
are a class of models that learn to recognize patterns 
from input data. One of their main properties is that 
they learn to progressively improve per for mance on a 
specific task without being explic itly programmed (for 
a review, see LeCun, Bengio, & Hinton, 2015). A given 
network trained in natu ral images is taught to achieve 
high per for mance on a specific task (e.g., a detection 
task, like finding the location of an object, or a recogni-
tion task, like identifying a place). Note that training 

abstract To solve object and scene recognition tasks, the 
 human brain has developed a par tic u lar cortical topology 
within its ventral and dorsal streams, recruiting regions in 
cascades to build a repre sen ta tion of what we see. A class of 
models, termed artificial deep neural networks, has been shown 
to learn a hierarchical repre sen ta tion of images, akin to the 
primate visual system, revealing internal repre sen ta tions that 
resemble the hierarchical topography in both the ventral 
and the dorsal visual streams of the  human brain. Deep neu-
ral network models provide a hypothesis- testing framework 
to predict  human brain responses as well as to give insights 
into how a network, natu ral or artificial, can learn and repre-
sent the visual world.

The High- Level Brain Regions Involved in Object 
and Scene Recognition

Brains are optimized to compute meaningful patterns 
from sensory inputs and to solve tasks fitted to their envi-
ronment: while echolocation in dolphins is power ful 
 under  water, vision is the most dominant sense in pri-
mates. Yet visual object and scene recognition are diffi-
cult computational prob lems to solve given an almost 
infinite space of variation within our environment: 
Objects appear in dif fer ent places, with dif fer ent orienta-
tions, shapes, colors, and textures, and many can be 
made of dif fer ent materials. In the real world, objects can 
be embedded in clutter, are often occluded, and can be 
observed from dif fer ent distances and viewpoints. 
Despite  these challenges, when we look at the world, a 
“feat of neural engineering” delivers a repre sen ta tion of 
what we see within only a few hundred milliseconds. How 
does the  human brain instantiate visual recognition?

Entering the ret ina, visual information initially 
reaches the primary visual cortex (area V1, in the calca-
rine sulcus) before being transmitted to a series of reti-
notopically or ga nized regions in visual occipital areas 
(areas V2, V3,  human V4) and then higher- level regions 
of the cortex (for a review, see Grill- Spector and Weiner, 
2014), which are responsible for visual perception and 
recognition. The types of computations and image fea-
tures represented in dif fer ent cortical sites have been 
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from only a small part of the image. The convolution 
operation performs a summarization of each region of 
the image. For example, imagine a flashlight covering a 
region of five by five pixels directed over the top- left 
corner of an image. The flashlight can slide across the 
entire image, covering a new region with each move-
ment. In this example, the flashlight is known as a filter 
(i.e., a neuron or kernel), which is an array of numbers 
(i.e., weights), and the region it is projecting light over is 
called a receptive field. The sliding motion of the flash-
light filter over the  whole image is called a convolution: as 
the filter is convolving, it is multiplying the values in the 
filter with the original pixel values of the image and 
summing  these values. Therefore, for example, for each 
five- by- five- pixel image region, a single number is pro-
duced. With the flashlight filter moving through all 
regions in the image, a new feature map, of a smaller size 
than the original image, is created. Therefore, as more 
convolutional layers are added, the region of the input 
image analyzed by a given neuron (i.e, its receptive field) 
increases, giving to the CNN an impor tant property for 
visual recognition: tolerance to the spatial position of a 
feature, or pattern, in the image (see the HMAX origi-
nal model; Riesenhuber and Poggio, 1999; Serre, Wolf, 
Bileschi, Riesenhuber, & Poggio, 2007).

What are the advantages of DNNs? CNNs have been shown 
to yield several desirable outcomes observed in biological 
networks (for a review, see Bengio, 2009; Kriegeskorte, 
2015). Akin to the observation that biological neurons 
exhibit receptive fields that increase in size between early 
visual areas and ventral stream regions, the “neurons” in 
 later layers of an artificial neural network also have larger 
receptive fields. Larger receptive fields provide tolerance 
to the spatial translation of feature or shape in the image. 
This means that  later layers  will be able to discriminate a 
pattern (i.e., a circle or a corner shape) in de pen dently of 
the location of that shape in the original image input. As 
an added benefit, the shared par ameters of the receptive 
fields that feed into each feature map allow for the same 
kernel function to be performed in dif fer ent areas of the 
input to each layer. This results in increased robustness 
of a CNN to shifts and distortions in the data. This 
robustness is then compounded by the greater expressive 
power of deep architectures (Bengio & LeCun, 2007) 
where the features of each layer are combined to form a 
higher level of abstraction in the succeeding layer. This 
increasing abstraction from layer to layer allows deep 
CNNs to produce strong generalizations for highly vari-
able functions. Additionally, this architecture supports 
the hypothesis that the network can disentangle at each 
step the  factors of variation under lying the input– output 
data. As a result, the neurons in the network learn to 

 these networks for a par tic u lar task, such as object clas-
sification (Krizhevsky, Sutskever, & Hinton, 2012) or 
scene classification (Zhou, Lapedriza, Xiao, Torralba, 
& Oliva, 2014), generally requires thousands of exam-
ples per class, due to a very large space of par ameters 
that define the inner workings of the network.

While the basic operators of  these networks are per-
formed by interconnected units (i.e., artificial neurons), 
the entire network can be described as a high- dimensional 
mathematical function with many par ameters (i.e., 
weights connecting units), which are tuned during a 
training (i.e., a learning) phase. In a supervised mode of 
training, an artificial network is taught associations 
between an input (i.e., an image) and an output (i.e., a 
label describing that image). It can adjust its par ameters 
by iteratively reducing the errors between an output- 
input pair (i.e., the word orange and a specific picture of 
an orange fed, for instance, to the first layer as pixel val-
ues over a small zone of the image) across many pre sen ta-
tions of the pair. The error is calculated based on the 
difference between the network’s output value and the 
desired target value. It is then sent backward through the 
network to iteratively calculate error values for each layer, 
which are then used to update the network par ameters.

This back- propagation algorithm (LeCun & Bengio, 
1995) is able to find a solution to high- dimensional 
discrimination tasks— that is, learning the most useful 
features that recur across all the examples of pictures 
labeled orange in order to distinguish an orange from 
1,000 other object categories. While it remains conten-
tious  whether a biological network like the brain uses a 
back- propagation function to learn feature matching 
between sensory inputs and classes of concepts, super-
vision signals can be triggered from dif fer ent external 
and internal sources of reinforcement (e.g., context 
provided by dif fer ent sensory modalities, direct verbal 
or tactile supervision, or comparison with mnemonic 
traces; for a review, see Kriegeskorte & Douglas, 2018).

How do artificial DNN models work? Let us look at a typi-
cal example of an artificial neural network, a CNN. A 
CNN is made of multiple layers, each implementing sig-
nal-  and image- processing functions. Figure  13.1 illus-
trates the original architecture of a CNN for visual object 
recognition, nicknamed AlexNet and proposed by 
Krizhevsky, Sutskever, & Hinton (2012). AlexNet is com-
posed of eight layers, some implementing one function 
only (e.g., layers three and four) and some implementing 
dif fer ent functions in succession (e.g., layers one and 
two). The key function of a CNN is its convolution, which 
is implemented in most of the layers through the  whole 
network (five convolutional layers in AlexNet): each layer 
is made by feature detection received through input 
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function of the task (recognizing objects or scenes) the 
network was trained to perform. Specifically, a first 
AlexNet CNN (Object- Net) was trained to discriminate 
between classes of objects (is it a dog, a cat, or another 
animal, using the ImageNet data set; Deng et al., 2009). 
A second AlexNet (Scene- Net) was trained to discrimi-
nate between classes of scenes (is it a kitchen, a high-
way, or another object, using the Places data set; Zhou 
et  al., 2014, 2017). To check what each artificial unit 
learned, Zhou et al. (2015) designed a pipeline inspired 
by neurophysiological experiments (illustrated in fig-
ure 13.2A): the two trained networks  were shown many 
versions of the same set of testing images in which a 
small patch of random pixels occluded each image ver-
sion. For each tested image, 5,000 stimulus versions 
 were created by sliding the localized occluder over the 
image. Feeding all  these occluded stimulus versions 
into a network and recording the change in activation 
compared to the original image (without any occluded 
region) allowed the calculation of a “discrepancy map” 
for each unit in the network. Examples of discrepancy 
maps for a par tic u lar unit for the ten images to which 
the unit was most responsive are shown in figure 13.2A. 
To consolidate the information, the discrepancy maps 
are centered around the spatial location of the unit 
that provided the maximum activation (see figure 13.2A, 
bottom row) and then averaged to build a final receptive 
field for that unit (figure 13.2A, right).

Figure 13.2B shows a visualization of the discrepancy 
map of a few such units: specifically, the visualization 

represent increasingly complex visual patterns as layers 
deepen (see figure 13.2B). For example, in layer one of 
AlexNet, neurons are tuned to features such as contours 
and edges, while in layer two, neurons are tuned to cur-
vature and repetitive patterns. In deeper layers, such as 
layers four and five, neurons become tuned to parts of 
objects and images, such as shape and form (Zeiler & 
Fergus, 2014; Zhou, Khosla, Oliva, & Torralba, 2015). 
This architecture of layers affords the artificial network 
the ability to learn many variations of a given object class, 
allowing the network to start resolving one of the most 
difficult challenges of object recognition: its diversity of 
views. In the real world, objects of the same category can 
be seen from dif fer ent viewpoints, in dif fer ent back-
grounds, with dif fer ent levels of clutter and occlusion, 
and at dif fer ent ret i nal image sizes. While  these models 
do not yet reach levels of  human object recognition, 
CNNs have solved some of  these issues better than mod-
els that are not hierarchically or ga nized.

What do DNNs Learn? Dif fer ent methods for visualiz-
ing the artificial units’ receptive fields and their selec-
tivity to specific patterns have been proposed as a 
means  toward understanding what a CNN has learned 
 after training for a par tic u lar task (Bau, Zhou, Khosla, 
Oliva, & Torralba, 2017; Simonyan, Vedaldi, & Zisser-
man, 2014; Zeiler and Fergus, 2014).

In Zhou et al. (2015), the authors describe a method 
to estimate and quantify the selectivity of  every single 
unit within the five convolutional layers of AlexNet as a 

figure  13.1 Deep CNN architecture AlexNet comprises 
eight layers. Each of layers one through five contains a con-
volution, some layers with max- pooling and normalization 
stages. The last three layers are fully  connected, with the last 

layer acting as the output label. The network takes pixel values 
as inputs and propagates information in a feedforward man-
ner through the layers, activating artificial units with par tic u-
lar weight values successively at each layer. (See color plate 15.)
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first layers.  These results are most likely due to the similar 
distribution of image statistics across the two image data 
sets, as both are made of natu ral images (Torralba & 
Oliva, 2003). However, the properties of units in subse-
quent, higher layers of the network differ (see also Zeiler 
& Fergus, 2014): while a network trained to categorize 
objects (Object- Net in figure 13.2B) showed a predomi-
nance of units tuned to shapes and object parts, the net-
work trained to classify scenes (Scene- Net in figure 13.2B) 
showed units selective to patterns that resemble  whole 
objects, as well as more elaborate spatial layout patterns. 
This is expected given the hierarchical structure and the 
cost function the CNNs are programmed to solve: finding 
the discriminant or diagnostic information that maxi-
mizes per for mance on a specific task. As scene classes are 
mainly differentiated from the objects they are made of 
(i.e., a sofa makes a living room, a stove makes a kitchen), 

shows the par tic u lar image patterns that drive the 
response of selected units in layers one, two, four, and 
five of AlexNet. For each unit’s receptive field, three 
examples are shown that correspond to par tic u lar 
images that activated this neuron the most. Note that 
to robustly evaluate the true selectivity of a par tic u lar 
artificial unit, many images need to be passed through 
the network (Zhou et al., 2015).

As illustrated in figure 13.2B, as the layers deepen we 
can see that the units are tuned to increasingly com-
plex features and sensitive to larger regions of the 
visual field— that is, they exhibit a larger receptive 
field, akin to the neurons found in the ventral visual- 
processing stream of primate brains.

Furthermore, as illustrated in figure 13.2B, the Object 
network and the Scene network learn highly similar pat-
terns of oriented edges, curves, and textures in their two 

figure  13.2 A, The pipeline for estimating the receptive 
field of each artificial unit of a DNN. Each sliding- window 
stimulus contains a small, randomized occluding patch (red 
arrow) at dif fer ent spatial locations. By comparing the acti-
vation response of each sliding- window occluder with the 
activation response of the original image, a discrepancy map 
for each image can be built ( middle top). By summing up the 
calibrated discrepancy maps ( middle bottom) for the top- ranked 

images (i.e. 10), we can visualize the receptive field of that 
unit (right). B, The receptive fields of three units of pool1, 
pool2, conv4, and pool5 layers, respectively, for Object- Net 
(AlexNet trained with the ImageNet data set) and Scene- 
Net (AlexNet trained with Places data set), along with three 
images that correspond to par tic u lar images that activated 
 these units the most. As the layers go deeper, the receptive 
field size gradually increases. (See color plates 16 and 17.)
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hierarchical relationship between convolutional neural 
network layers, such as in AlexNet (figure 13.1) and the 
pro cessing cascade of information in both ventral and 
dorsal visual pathways in the  human brain (Cadieu et al., 
2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016b; 
Khaligh- Razavi, Cichy, Pantazis, & Oliva, 2018; Khaligh- 
Razavi & Kriegeskorte, 2014; Scholte, Losch, Ramakrish-
nan, de Haan, & Bohte, 2017; Seeliger et al., 2017; Yamins 
et  al., 2014, among  others). The relationship between 
model and brain data can be estimated using a tech-
nique termed repre sen ta tional similarity analy sis, or RSA 
(Kriegeskorte, Mur, & Bandettini, 2008). Briefly, RSA 
builds dissimilarity distance matrices (referred to as a 
repre sen ta tional dissimilarity matrices, or RDMs) 
between  every pair of images for which data are pro-
duced. For instance, for a data set of 100 images, an RDM 
can be built as a 100- by-100 matrix of distances between 
each pair of images. The RDMs can be built from the 
artificial units of a DNN layer, or from fMRI voxels activ-
ity in a brain region, or from the neuromagnetic signals 
captured from MEG sensors. The distributed nature of 
neural network data, where the response to an image 
input is best characterized as a pattern across artificial 
units within a layer, makes RSA an efficient analy sis 
framework for relating the brain and models.

In the case of object pro cessing, most studies have 
focused on comparing neural networks with early visual 
cortical (EVC) areas and inferior- temporal (IT) regions 
of the brain (Cadieu et  al., 2014; Cichy et  al. 2016b; 
Khaligh- Razavi & Kriegeskorte, 2014; Khaligh- Razavi 
et al., 2018; Yamins et al., 2014). Figure 13.3 illustrates 
results from such a study by Cichy et  al. (2016b): the 
authors compared the RDMs from fMRI responses to 
object images to  those from Object DNN (specifically, 
an AlexNet architecture trained on hundreds of object 
categories). This yielded eight brain maps (one for each 
of the eight layers of AlexNet; see figure 13.1) identify-
ing the cortical regions where repre sen ta tions in the 
object DNN most correlated with cortical brain 
responses. As expected, for early model layers, similari-
ties of visual repre sen ta tions  were confined to the occip-
ital lobe (i.e., the low- level and midlevel visual regions), 
and for late model layers, similarities of visual repre sen-
ta tions  were found to correlate with more anterior 
regions in both the ventral and dorsal visual streams.

The comparison of DNNs for scene pro cessing follows 
a similar pattern of results, with studies focusing on com-
paring scene models with brain regions previously iden-
tified to be more selective to images of places and scene 
layout than to other images (i.e., the parahippocampal 
place area, or PPA; Epstein & Kanwisher, 1998; the occip-
ital place area, or OPA; Dilks, Julian, Paunov, & Kan-
wisher, 2013). For instance, Bonner and Epstein (2018) 

the network learned that patterns that we call “objects” 
are diagnostic features of scene classes. An emerging 
property is that both Object- Net and Scene- Net show 
units that seem specific to  faces,  people, and body parts, 
even as  these networks did not explic itly learn to associate 
images to labels of  faces,  people, or body parts. Yet the 
emergence of such units suggests that the networks may 
have implicitly learned  faces and body parts as diagnostic 
features that are contextually related to objects— for 
example, that baby  faces are contextually related to nurs-
ery, or heads are contextually related to hats.

Human- interpretable concepts (i.e., a hat, a face, or 
an oval shape) emerge as latent variables in DNNs 
trained to solve detection or recognition tasks (Bau 
et al., 2017).  These networks are not forced to decom-
pose the classification prob lem in any interpretable way: 
the units do not have to specialize for par tic u lar patterns 
nor specialize for patterns that make sense to us (like 
object shapes, parts of objects, and more). However, 
 these networks show interpretable units (figure 13.2B), 
which suggests they are able to spontaneously learn 
repre sen ta tions that are disentangled (Bau et al., 2017). A 
disentangled repre sen ta tion learns separate variables 
for separate meaningful features (Bengio, Courville, & 
Vincent, 2013)— for example, a concept or word that a 
person would use to describe a scene. While a network 
can learn an efficient encoding that makes eco nom ical 
use of hidden variables to distinguish between inputs, an 
internal structure with disentangled repre sen ta tion is an 
in ter est ing property for comparing deep network repre-
sen ta tion to neural brain repre sen ta tions.

Applications of Deep Neural Networks to Investigate 
Cortical Regions of Object and Scene Pro cessing

One can derive an algorithmically informed view on 
visual pro cessing in the  human brain by comparing, for 
the same set of images, the responses of a cortical 
region to the repre sen ta tion calculated from models. 
 Because DNNs are made of a series of layers, a repre-
sen ta tion can be extracted from each layer for each 
image input. As shown in figure 13.2B, units in early 
layers of the DNN are more responsive to  simple fea-
tures like lines and corners, whereas units in  later layers 
can be selective to complex patterns like shapes and 
object parts. This hierarchical repre sen ta tion of objects 
within the DNN resembles the hierarchical neural 
repre sen ta tion found in the primate visual brain (Grill- 
Spector & Weiner, 2014).

Using dif fer ent neural- imaging techniques (i.e., elec-
trophysiology, functional magnetic resonance imaging 
[fMRI], magneto/electroencephalography [M/EEG]), 
several recent studies have shown a systematic 
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attention- demanding tasks, such as object recognition 
in clutter,  under occlusion, or with segmentation, are 
better approximated by a recurrent network. The basic 
assumption is that recurrent connections from higher 
to lower layers allow for looping back output to input, 
providing a temporal context to pro cess the current 
input. Given that the state of the art in DNNs is evolving 
at an exponential pace, recurrent DNN models have a 
tremendous potential for explaining and operational-
izing how biological brain networks learn diagnostic 
features, develop expertise, represent sensory informa-
tion, solve recognition tasks, forecast the  future, and 
never stop learning.
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