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Abstract. In this paper, we propose a scene-centered representation
able to provide a meaningful description of real world images at multiple
levels of categorization (from superordinate to subordinate levels). The
scene-centered representation is based upon the estimation of spatial
envelope properties describing the shape of a scene (e.g. size, perspective,
mean depth) and the nature of its content. The approach is holistic and
free of segmentation phase, grouping mechanisms, 3D construction and
object-centered analysis.

1 Introduction

Fig. 1 illustrates the difference between object and scene-centered approaches
for image recognition. The former is content-focused: the description of a scene
is built from a list of objects (e.g. sky, road, buildings, people, cars [1, 4]). A
scene-centered approach is context-focused: it refers to a collection of descriptors
that apply to the whole image and not to a portion of it (the scene is man-made
or natural, is an indoor or an outdoor place, etc.). Object and scene-centered
approaches are clearly complementary.

Seminal models of scene recognition [2, 8] have proposed that the highest
level of visual recognition, the identity of a real world scene, is mediated by
the reconstruction of the input image from local measurements, successively
integrated into decision layers of increasing complexity. In this chain, the role
of low-level and medium levels of representation is to make available to the
high-level a useful and segmented representation of the scene image. Following
this approach, current computer vision models propose to render the process of
”recognizing” by extracting a set of image-based features (e.g. color, orientation,
texture) that are combined to form higher-level representations such as regions
[4], elementary forms (e.g. geons, [3]) and objects [1]. Scene identity level is
then achieved by the recognition of a set of objects or regions delivered by the
medium level of processing. For instance, the medium-level visual representation
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of a forest might be a ”greenish and textured horizontal surface, connected to
several textured greenish blobs, and brownish, vertically oriented shapes” ([4]).
High level processes might interpret these surfaces as a grass land, bushes and
trees [1]).

Object-centered:
Sky, buildings, 
people, cars, 
trees, road
Scene-centered:
Large space,
Man-made scene,
Semiclosed space

Object-centered:
Lamp, sofa
table, window

Scene-centered:
Small space,
Man-made scene,
Enclosed

Fig. 1. Example of object-centered and space-centered descriptions.

On the other hand, some image understanding studies suggest that human
observers can apprehend the meaning of a complex picture within a glance [11]
without necessarily remembering important objects and their locations [7, 13].
Human observers are also able to recover scene identity under image conditions
that have degraded the objects so much that they become unrecognizable in
isolation. Within a glance, observers can still identify the category of a scene
picture with spatial frequency as low as 4 to 8-cycles/image [15, 9]. Scene mean-
ing may also be driven from the arrangement of simple volumetric forms, the
”geons” [3]. In both cases (blobs or geons), detailed information about the local
identity of the objects is not available in the image. All together, those studies
suggest that the identity of a real world scene picture may also be recovered
from scene-centered based features not related to object or region segmentation
mechanisms.

In an effort to by-pass the segmentation step and object recognition mech-
anisms, a few studies in computer vision have proposed an alternative scene-
centered representation, based on low-level features extraction [16, 20], semantic
axes [10, 14] or space descriptors [10, 18]. Common to these studies is the goal to
find the basic-level category of the image (e.g. street, living room) directly from
scene descriptors bypassing object recognition as a first step. As an illustration, a
scene-centered representation based on space descriptors [10, 18] could resemble
the description provided in Figure 1: the picture of the street represents a man-
made, urban environment, a busy and large space, with a semi-closed volume
(because of the facades of the building). Such a scene-centered representation
could be built upon space properties correlated with the scene’s origin (natural,
outdoor, indoor), its volume (its mean depth, its perspective, its size), the occu-
pancy of the volume (complexity, roughness), etc. These spatial scene-centered
characteristics happened to be meaningful descriptors highly correlated with the
semantic category of the image [10, 18].
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This paper is dedicated to the description of a scene-centered representation,
at the medium level of visual processing. Our goal is to generate a meaningful
description of real world scene, based on the identification of simple spatial prop-
erties. In the following sections, we describe how to compute a set of volumetric
properties of a scene image, as they would appear in the 3D world, based on
computations made on 2D images. The resulting space-centered scheme is inde-
pendent of the complexity of the scene image (e.g. number of objects and regions)
and able to provide multiple level of scene description (from superordinate to
subordinate levels).

2 Scene space descriptors

In order to identify the candidate descriptors of real world scenes, we ran a
behavioral experiment similar to the procedures used by [12, 6] for classifying
textures. For example, the perceptual properties suitable for representing the
texture of a forest may be its orientation, its roughness, and its homogeneity
[12, 6]. These properties are meaningful to an observer that may use them for
comparing similarities between two texture images. As a scene is inherently a 3D
environment, in [10], we asked observers to classify images of scenes according to
spatial characteristics. Seventeen observers were asked to split 81 pictures into
groups. They were told that scenes belonging to the same group should have
similar global aspect, similar spatial structure or similar elements. They were
explicitly told not to use a criteria related to the objects (e.g. cars vs. no cars,
people vs. no people) or a scene semantic groups (e.g. street, beach). At the end
of each step, subjects were asked to explain the criteria they used with few words
(see [10] for a detailed explanation).

The initial list of space descriptors described in [10] is given below. In this
paper, we propose to use these perceptual properties as the vocabulary used to
build a scene-centered description. We split the descriptors used by the observers
in two sets:

The descriptors that refer to the volume of the scene image are:

– Depth Range is related to the size of the space. It refers to the average
distance between the observer and the boundaries of the scene [18].

– Openness refers to the sense of enclosure of the space. It opposes indoor
scenes (enclosed spaces) to open landscapes. Openness characterizes places
and it is not relevant for describing single objects or close-up views.

– Expansion represents the degree of perspective of the space. The degree of
expansion of a view is a combination of the organization of forms in the scene
and the point of view of the observer. It is relevant to man-made outdoors
and large indoors.

– Ruggedness refers to the deviation of the ground with respect to the horizon.
It describes natural scenes, opposing flat to mountainous landscapes.

– Verticalness: It refers to the orientation of the ”walls” of the space, whenever
applicable. It opposes scenes organized horizontally (e.g. highways, ocean
views), to scenes with vertical structures (buildings, trees).
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The descriptors that refer to the scene content are:

– Naturalness refers to the origin of the components used to build the scene
(man-made or natural). It is a general property that applies to any picture.

– Busyness is mostly relevant for man-made scenes. Busyness represents the
sense of cluttering of the space. It opposes empty to crowded scenes.

– Roughness refers to the size of the main components (for man-made scenes,
from big to small) or the grain of the dominant texture (for natural scenes,
from coarse to fine) in the image.

We proposed to refer to the spatial envelope of a real world scene and a scene
image, as a combination of space descriptors, in reference to the architectural
notion of ”envelope” of urban, landscape and indoor environments. In the next
section, we defined the image-based representation that allows extracting spatial
envelope descriptors from raw image, in order to generate the scene-centered
description (cf. Fig. 4 and 5).

3 Scene-Space centered representation

Opposed to object-centered image representation, we describe here an image
representation [10, 18] that encodes the distribution of textures and edges in the
image and their coarse spatial arrangement without segmentation stage (see also
[16, 20]). The resulting ”sketchy” representation, illustrated in fig. 2, is not ade-
quate for representing regions or objects within an image, but it captures enough
of the image structure to reliably estimate structural and textural attributes of
the scene (see sections 5-7). The sketch is based on a low-resolution encoding of
the output magnitude of multiscale oriented Gabor filters:

A2
M (x, k) =

{|i(x) ∗ gk(x)|2 ↓ M
}

(1)

i(x) is the input image and gk(x) is the impulse response of a Gabor filter. The
index k indexes filters tuned to different scales and orientations. The notation
↓ M represents the operation of downsampling in the spatial domain until the re-
sulting representation AM (x, k) has a spatial resolution of M2 pixels. Therefore,
AM (x, k) has a dimensionality M2K where K is the total number of filters used
in the image decomposition. Fig. 2 illustrates the information preserved by this
representation. It shows synthesized texture-like images that are constrained to
have the same features AM (x, k) (M = 4, K = 20) than the original image. This
scene-centered representation contains a coarse description of the structures of
the image and their spatial arrangement.

Each scene picture is represented by a features vector v with the set of
measurements AM (x, k) rearranged into a column vector. Note that the dimen-
sionality of the vector is independent of the scene complexity (e.g. number of
regions). Applying a PCA further reduces the dimensionality of v while preserv-
ing most of the information that accounts for the variability among pictures.
The principal components PCs are the eigenvectors of the covariance matrix
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Fig. 2. Examples of sketch images obtained by coercing noise to have the same features
than the original image. This scene-centered representation encodes the spatial arrange-
ment of structures (here, at 2 cycles/image) without a previous step of segmentation.
Each sketch has been reconstructed from 320 features (see [18]).

C = E[(v − m)(v − m)T ] where v is a column vector composed by the image
features, and m = E[v]. We will refer to the column vector v as the L dimen-
sional vector obtained by projection of the image features onto the first L PCs
with the largest eigenvalues.

4 From image features to spatial envelope descriptors

The system described below is designed to learn the relationship between the
sketch representation (image features v) and the space descriptors. Each picture
has two values associated to each space descriptor {Rj, αj}. The first parameter,
Rj is the relevance of a specific space descriptor for a given picture, scaled
between 0 and 1. To annotate the database (3,000 pictures), three observers
selected, for each picture, the set of space descriptors that were appropriate. For
example, a street image can be described in terms of its mean depth, its degree of
openness and expansion and how cluttered it is. But for describing an object or an
animal, expansion and busyness are not relevant descriptors. Verticalness, on the
other hand, may apply specifically to some objects (e.g. a bottle), indoors (e.g.
a stairs view) urban places (e.g. a skyscraper) and natural scenes (e.g. forest).
Naturalness and mean depth are relevant descriptors of any image. The second
parameter, αj is the value of a specific space descriptor, normalized between 0
and 1. For instance, a city sky-line will have a large value of mean depth and
openness; a perspective view of a street will have a high value of expansion and
an intermediate value of depth and openness. To calibrate αj , each picture was
ranked among a set of pictures already organized from the lowest to the highest
value of each descriptor (e.g., from the more open to the less open space). The
position index for each picture corresponded to αj .

The system learnt to predict the relevance and the value of each space de-
scriptor, given a set of image features v. Three parameters are estimated for
each new picture:

– Relevance. Relevance of a space descriptor is the likelihood that an observer
uses it for describing volumetric aspects of the scene. The Relevance may be
approximated as: P (Rj = 1|v).
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– Value. Value of a space descriptor estimates which verbal label would best
apply to a scene. It can be estimated from the image features as α̂j =
E [ αj |v].

– Confidence. Confidence value gives how reliable is the estimation of each
space descriptor provided the image features v. It corresponds to σ2

j =
E[(α̂j −αj)2|v]. The higher the variance σ2

j the less reliable is the estimation
of the property αj given the image features v.

The Relevance is calculated as the likelihood:

P (Rj = 1|v) =
p(v|Rj = 1)p(Rj = 1)

p(v|Rj = 0)P (Rj = 0) + p(v|Rj = 1)P (Rj = 1)
(2)

The PDFs p(v|Rj = 1) and p(v|Rj = 0) are modeled as mixture of gaussians:
p(v|Rj = 1) =

∑Nc

i=1 g(v, ci) p(ci). The parameters of the mixtures are then
estimated with the EM algorithm [5]. The prior P (Rj = 1) is approximated by
the frequency of use of the attribute j within the training set.

Estimation of the value of each descriptor can be performed as the conditional
expectation α̂j = E [ αj |v] =

∫
αjf(αj |v)dαj . The function can be evaluated

by estimating the join distribution between that values of the attribute and the
image features f(αj ,v). This function is modeled by a mixture of gaussians:
f(αj ,v) =

∑Nc

i=1 g(α |v, ci) g(v | ci) p(ci) with g(α |v, ci) being a gaussian with
mean ai + vT bi and variance σi. The learning of the model parameters for each
property is estimated with the EM algorithm and the training database [5, 18].
Once the learning is completed, the conditional PDF of the attribute value αj ,
given the image features, is:

f(αj |v) =
∑Nc

i=1 g(αj |v, ci) g(v | ci) p(ci)
∑Nc

i=1 g(v | ci) p(ci)
(3)

Therefore, given a new scene picture, the attribute value is estimated from the
image features as a mixture of local linear regressions:

α̂j =
∑Nc

i=1(ai + vT bi) g(v | ci) p(ci)
∑Nc

i=1 g(v | ci) p(ci)
(4)

We can also estimate the scene attribute using the maximum likelihood: α̂j =
maxαj{f(αj |v)}. The estimation of the PDF f(αj |v, S) provides a method to
measure the confidence of the estimation provided by eq. (4) for each picture:

σ2
j = E[(α̂j − αj)2|v] =

∑Nc

i=1 σ2
i g(v | ci) p(ci)

∑Nc

i=1 g(v | ci) p(ci)
(5)

The confidence measure allows rejecting estimations that are not expected
to be reliable. The bigger the value of the variance σ2

j the less reliable is the
estimation α̂j .
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Fig. 3. a) correlation of picture ranking, for each space dimension, between observers
and the model as a function of the percentage of images selected. The images are
selected by putting a threshold to the confidence σ2

j . From top to bottom: verticalness,
openness, mean depth, ruggedness, expansion, busyness. b) Performance of correct
classification in man-made vs. natural scenes and indoor vs. outdoor.

5 Performances of classification

Each space property is a one-dimensional axis along which pictures are con-
tinuously organized [10]. Fig. 3.a shows correlation values between the ranking
made by human observers and the ranking computed by the model (from eq. 4).
We asked two observers to perform 10 orderings, of 20 images each (images not
used in the training), for each of the spatial envelope properties. Orderings were
compared by measuring the Spearman rank correlation:

Sr = 1 − 6
∑n

i=1(rxi − ryi)2

n(n2 − 1)
(6)

with n = 20. rxi and ryi are respectively the rank positions of the image i
given by the algorithm and by one subject. A complete agreement corresponds
to Sr = 1. When both orderings are independent, Sr = 0. When considering the
entire image database, correlation values go from 0.65 to 0.84 for the different
attributes of the spatial envelope. When considering a percentage of images with
the highest level of confidence (σ2

j , Eq. 5), performances improve.

6 Generating space-centered descriptions

The value αj of a specific descriptor assigned to an image can be translated
into a verbal description. Each space axis was split in a few subgroups (from
2 to 5). For example, the mean depth axis was separated in 4 groups: close-up
view, small space, large space, and panoramic view. The openness descriptor was
represented by 5 categories (open, semi-open, semi-closed, closed, and enclosed).
All together, the verbal labels are expected to form a meaningful description
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Panoramic view (7000m)
Natural scene.
Open environment.

Panoramic view (3500m)
Man-made scene.
Open environment.
Space in perspective.
Empty space.

Large space (120m)
Natural scene.
Closed environment.

Small space (3m)
Man-made scene.
Enclosed environment.

Large space (60m)
Natural scene.
Closed environment.

Close-up view (1m) Large space (140m)
Man-made scene.
Semiclose environment.

Close-up view (1m)
Man-made object.

Small space (9m)
Man-made scene.
Closed environment.
Empty space.

Close-up view (1m)
Natural scene.

Large space (90m)
Man-made scene.
Semiclose environment.
Busy space.

Small space (5m)
Man-made scene.
Enclosed space.
Empty space.

Fig. 4. Examples of space-centered descriptions automatically generated. For each im-
age, the description contains only the space properties that are relevant and that pro-
vided high confidence estimates.

of the scene (see Fig. 4). Whenever a property was not relevant for a type of
image (Rj < threshold) or the level of confidence (σ2

j ) was not high enough, the
system did not use the corresponding verbal label. Therefore, instead of being
wrong, the model provides a less precise description.

7 Computing space-centered similarities

In [10], we provided space-features based image similarities: pictures with similar
spatial envelope values were closed together in a multi-dimensional space formed
by the set of space descriptors. Within this space, neighbor images look alike.

The spatial envelope representation is able to generate descriptions at dif-
ferent levels of categorization (fig. 5): the super-ordinate level of the space (e.g.
large scaled views), a more basic-level (e.g. open and expanded urban space),
and a subordinate-level (e.g. open and expanded urban space, crowded) where
pictures are more likely to look similar. To which extend a specific space prop-
erty is relevant for a subordinate or super-ordinate level of description in regard
to human observers, still need to be determined, but the general principle il-
lustrated in fig. 5 shows the potentiality of the spatial envelope description for
categorizing very different pictures at multiple levels of categorization, as human
observers do.

8 Conclusion

The scene-centered representation based on spatial envelope descriptors show
that the highest level of recognition, the identity of a scene, may be built from
of a set of volumetric properties available in the scene image. It defines a gen-
eral recognition framework within which complex image categorization may be
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achieved free of segmentation stage, grouping mechanisms, 3D interpretation and
object-centered analysis. The space-centered approach provides a meaningful de-
scription of scene images at multiple levels of description (from superordinate to
subordinate levels) and independently of image complexity. The scene-centered
scheme provides a novel approach to context modeling, and can be used to en-
hance object detection algorithms, by priming objects, their size and locations
[17]).

Large space. (200m)

Large space. (200m). Man-made scene.

Large space. (200m). Man-made scene. Space in perspective. Busy space.

Panoramic view. (5000m)

Panoramic view. (5000m). Natural scene. Montaneous landscape.

Panoramic view. (5000m). Natural scene.

Fig. 5. Scene categorization at different levels of description.
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