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Coarse Blobs or Fine Edges? Evidence That Information
Diagnosticity Changes the Perception
of Complex Visual Stimuli

Aude Oliva and Philippe G. Schyns
University of Glasgow, Glasgow, United Kingdom

Efficient categorizations of complex visual stimuli require effective encodings of
their distinctive properties. However, the question remains of how processes of object
and scene categorization use the information associated with different perceptual spa-
tial scales. The psychophysics of scale perception suggests that recognition uses coarse
blobs before fine scale edges, because the former is perceptually available before the
latter. Although possible, this perceptually determined scenario neglects the nature of
the task the recognition system must solve. If different spatial scales transmit different
information about the input, an identical scene might be flexibly encoded and perceived
a the scale that optimizes information for the considered task—i.e., the diagnostic
scale. This paper tests the hypothesis that scale diagnosticity can determine scale
selection for recognition. Experiment 1 tested whether coarse and fine spatia scales
were both available at the onset of scene categorization. The second experiment tested
that the selection of one scale could change depending on the diagnostic information
present at this scale. The third and fourth experiments investigated whether scale-
specific cues were independently processed, or whether they perceptually cooperated
in the recognition of the input scene. Results suggest that a mandatory low-level
registration of multiple spatial scales promotes flexible scene encodings, perceptions,
and categorizations. © 1997 Academic Press

Efficient categorizations of complex visual stimuli require effective encod-
ings of their distinctive properties. In the object recognition literature, scene
categorization is often portrayed as the ultimate result of a progressive recon-
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Fic. 1. Thisfigure (adapted from Schyns & Oliva, 1994) shows an example of ahybrid stimulus
used in our experiments. The picture mixes the fine information (High Spatial Frequencies) of
a highway with the coarse information (Low Spatial Frequencies) of a city. To perceive the city
in Low Spatial Frequencies, squint, blink, defocus, or step back from the picture. Hybrid stimuli
(see Schyns & Oliva, 1994) are unique because they multiplex information in scale space.

struction of the input scene from simple local measurements. Boundary edges,
surface markers and other low-level visual cues are seriadly integrated into
successive layers of representations of increasing complexity, the last of which
derives the identity of a scene from the identity of afew objects. For example,
in Fig. 1, combinations of fine-grained edge descriptors suggest the presence
of cars, road panels, highway lamps, and other objects which typically com-
pose a highway scene. Precise classifications often require that the identifica-
tion of component objects from such fine-grained cues precedes the identifica-
tion of the scene.

However, there are data challenging such an exclusive **object-before-
scene’’ recognition scheme. Complex visua displays composed of many par-
tially hidden objects are often recognized quickly, in a single glance—in
fact, as fast as a single component object (e.g., Biederman, Mezzanotte, &
Rabinowitz, 1982; Potter, 1976; Schyns & Oliva, 1994). This suggests that
categorization processes can sometimes directly extract scene representations
that allow ‘‘express,’’ but comparatively less precise classifications of the
input (Henderson, 1992). To illustrate the different routes to scene categoriza-
tion, squint, blink or defocus while looking at Fig. 1, another scene should
appear (if this demonstration does not work, step back from the picture until
you perceive a city).
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Figure 1 (adapted from Schyns & Oliva, 1994) illustrates spatial scales,
the perceptual output that might be used for precise and express visual catego-
rizations. High Spatial Frequencies (HSF) represent the fine scale highway
and Low Spatial Frequencies (LSF) encode the coarse scale city. Although
itis now well established that the visual system generally operates at multiple
scales, their selection for recognition is till a matter of on-going research.
One possibility is that lower-level perception extracts the coarse scale before
the fine scale and therefore coerces a mandatory coarse-to-fine recognition
scheme (the fixed usage scenario). Alternatively, the information demands of
a categorization task could bias recognition processes to operate at the most
informative scale for the task at hand (the flexible usage scenario). For exam-
ple, while coarse scale information might be sufficient for an express categori-
zation of Fig. 1 as city, a more precise (e.g., New York) categorization of the
same picture might require comparatively finer scale cues.

At an empirical level, the experiments presented in this paper seek to
understand whether the fixed, or the flexible usage of spatial scales best
accounts for scale-based scene recognition performance. In other words, they
seek to understand the structure of the information that might support scene
recognition ‘‘at a glance.”” At a more theoretical level, scale-based scene
recognition is used to exemplify another, more important phenomenon: That
the way we categorize objects and scenes affects the way we perceive them
(Schyns, Goldstone & Thibaut, in press).

The paper is organized as follows. We first review the long tradition of
psychophysical, computational, and psychological studies of scale perception
which all suggest a form of coarse-to-fine, fixed scale usage. We then argue
that scale-based recognition might be more fruitfully framed as a flexible
interaction between the information demands of specific categorizations and
the perceptual availability of recognition cues at multiple spatial scales. Four
experiments are conducted to test this hypothesis and its implications for
recognition and scale perception. We believe that the evidence presented here
might reshape conceptions of categorization, perception, and their interactions
in future theories of everyday object and scene recognition.

Multiscale Processing in Low-Level Perception

Following Fourier's theorem, linear systems analysis successfully demon-
strated that any two-dimensional signal could be analyzed into a sum of
sinusoids of different amplitudes, phases, and angles, each of which represents
the image at a different spatial scale. The two-dimensional sinusoids compos-
ing visual signals are called Spatial Frequencies (SFs, as expressed by a
number of cycles per degree of visual angle). A SF channel is a filtering
mechanism; something which passes some, but not al, of the SF information
it receives (de Vaois & de Vaois, 1990). A particular channel may transmit
al the information that is below a particular spatial frequency (low-pass),
above a particular frequency (high-pass), or within a restricted region of
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frequencies (band-pass). To illustrate, the two scenes composing each picture
of Fig. 1 roughly correspond to the information transmitted by a low- (the
blobs) and a high- (the boundary edges) pass SF channel.

Evidence that perception filters the input with various SF channels originaly
arose from psychophysica studies on contrast detection and frequency-specific
adaptation (see de Vaois & de Vdois, 1990, for an excellent review of spatial
vision). In their seminal paper, Campbell and Robson (1968) demonstrated that
the detection and the discrimination of a pattern could be predicted from the
contrast of its individual frequency components. As this was only possible if
perception was andyzing patterns with independent SF filters, the authors con-
cluded that the visual system comprises groups of independent, quasilinear band-
pass filters, each of which is narrowly tuned to specific frequency bands (see
aso Graham, 1980; Pantle & Sekuler, 1968; Thomas, 1970; Webster & de
Vaois, 1985). Our visual system would ‘‘look at'’ an image through four to six
overlapping SF filters (Ginsburg, 1986; Wilson & Bergen, 1979).

The underlying structure of these channels was the object of frequency-
specific adaptation studies. The rationale of these experiments was that an
adaptation to pattern X changing the appearance or the sensitivity to X, but not
the appearance or sensitivity to pattern Y would indicate that the underlying
structures were simultaneously processing independent aspects of the patterns
(deVaois & deVaois, 1990). For example, Blackmore and Campbell (1969)
showed that people exposed to a sinewave pattern oscillating at, e.g., 5 cycles/
deg., exhibited areduction in their ability to perceive contrast at this particular
frequency. That is, adaptation to a SF selectively impaired sensitivity to this
particular frequency, as if one channel was affected, but not the others (see
also Pantle & Sekuler, 1968).

In summary of these early, but seminal results, there is considerable evi-
dence that perception processes the visual input at different spatial scales,
which are functionally described with SF channels. This description is func-
tional because cells which are members of a SF channel are distinguished by
their behavior—i.e., they are tuned to specific SFs. So n different channels
may not necessarily be n discrete and fixed structura entities like an n-
core cable. Instead, a channel maybe composed of whatever brain cells that
participate in the transmission of information about an input with sufficient
contrast within a range of particular SFs (de Vaois & de Valois, 1990).
Although recent research has shown that channels were interactive (e.g.,
Henning, Hertz & Broadbent, 1975) and nonlinear (e.g., Snowden & Ham-
mett, 1992), there is little doubt that spatia filtering is prior to many early
forms of human visual processing such as motion (Morgan, 1992), stereopsis
(Legge & Gu, 1989; Schor, Wood & Ogawa, 1984), depth perception (Mar-
shall, Burbeck, Ariely, Rolland & Martin, 1996) and saccade programming
(Findlay, Brogan & Wenban-Smith, 1993). Hence, spatial scales are excellent
materials to study the influence that higher-level processes such as scene
categorization can exert on lower-level perception.



76 OLIVA AND SCHYNS

Multiscale Processing in Computational Vision

A question could be raised of the usefulness of multiscale processing. If
the original image contains all the information required for al its possible
categorizations (e.g., ‘‘outdoor scene,’’ ‘‘city,”” ‘‘New York'’), what could
be the purpose of spatial filters? Studies in computational vision have shown
that recognition agorithms can hardly work with the raw pixel values of a
digitized image; some qualitative description of the input must be first ob-
tained. Ideally, this initia description should be compact and composed of
elements closely corresponding to the important events of the outside world
(Witkin, 1986). For scene and object recognition tasks, local minima of the
input signal and its derivatives have been frequently used as the first descrip-
tors of alayered reconstruction of the visual scene (e.g., Marr, 1982; Marr &
Hildreth, 1980; Watt & Morgan, 1985, among many others). Local minima
of the signal and its derivatives are particularly appropriate to describe objects
because they can often be directly tied to important contours.

Scale, however, presents difficulties for obtaining good edge descriptions.
The varieties of recognition tasks facing perception makes it very likely that
there is not one particular scale of description that is universal, or intrinsically
more interesting or important than any other (think, e.g., of recognizing a
plane at the terminal, on the runway, or at 30,000 feet). Existence of important
events at different scalesled vision researchersto investigate multiscale repre-
sentations to organize and simplify the description of events (e.g., Burt &
Adelson, 1983; Canny, 1986; Mallet, 1989; Marr & Hildreth, 1980; Waitt,
1991; Witkin, 1986; among many others). For example, fine scale boundary
edges are notoriously noisy, and they present many confusing details that
would not appear in edges measured at a coarser resolution. However, fine
details are often still necessary for a complete description of the object, for
example to distinguish it from a similar object (see Norman & Erlich, 1987).
Boundary edges that would coincide across resolutions could serve as a skele-
ton describing the coarse structure of an object which would later be fleshed
out by the finer structures processed at higher resolutions (see, e.g., Canny,
1986; Mallet, 1991; Marr, 1982; Watt, 1987). Coar se-to-fine processing sum-
marizes the idea that it may be computationally more efficient to first derive
a coarse (albeit imprecise) description of the image before extracting more
detailed (but considerably noisier) information.

In summary, computational vision research suggests that no level of resolu-
tion is universally better or more important for object and scene recognition.
For these reasons, it is often necessary to take multiple measurements of the
input at different spatial scales. An efficient recognition strategy starts with
coarse measurements and converges on finer measurements.

Coarse-to-Fine Recognition

Although many psychophysical studies exist that are using simple sine-
wave stimuli to investigate issues of perceptual scales, comparatively fewer
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Fic. 2. This figure illustrates the important difference existing between coarse-to-fine and
global-to-local processing. LSF represent C (for Coarse), and HSF represent F (for Fine). The
reading of C and F shows that global processing can occur at both coarse and fine scales. The
reading of the small Ls (for Local) composing the larger letters reveal that local processing is
also possible at both scales. Hence, coarse-to-fine and global-to-local occur in different spaces.
Global-to-local occurs in the two-dimensional visual field, while coarse-to-fine occurs on a third
dimension, orthogonal to the image plane. On this third axis, each resolution of the image
represents a different spatial scale (in the figure, there are two such spatial scales).

studies have dealt with scale-specific recognition of real-world visual dis-
plays (though see, e.g., Costen, Parker & Craw, 1994; Hayes, Morrone &
Burr, 1986; Parker, Lishman, & Hughes, 1992). In fact, many visual recogni-
tion studies (especially those using simple line-drawings of stimuli, e.g.,
Biederman, 1988; Boyce, Pollatsek, & Rayner, 1989) implicitly assume that
important processing mostly occurs at finer resolutions. But multi-scale
recognition studies have demonstrated that coarse information is often pro-
cessed before fine information, or that fine information takes longer to be
processed. Evidence of coarse-before-fine processing was reported for face
(e.g., Breitmeyer, 1984; Fiorentini, Maffei, & Sandini, 1983; Sergent, 1982,
1986), object (e.g., Ginsburg, 1986), and scene recognition (Parker et al.,
1992; Schyns & Oliva, 1994).

In arelated vein, a phenomenon called global-to-local has been thoroughly
studied since Navon’'s (1977) influential research (e.g., Kimchi, 1992, for a
review; see also Hughes, 1996; Hughes, Nozawa & Kitterle, 1996; Lamb &
Yund, 1996a, 1996b; Paquet & Merikle, 1988; Robertson, 1996; among many
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others). Navon used hierarchical letters similar to those presented in Fig. 2.
He demonstrated that whereas the global processing of F was not affected
by the local Ls, the local processing of Ls was slowed down by incongruent
global letters. This asymmetry which suggests that global structures are pro-
cessed before local structures is called the global precedence effect.

Global precedence, as many other visual phenomena, has been grounded on
coarse-to-fine processing (Badcock, Withworth, Badcock, & Lovegrove, 1990;
Lamb & Yund, 1996b; Shulman, Sullivan, & Sakoda, 1986; Hughes et a.,
1996). The claimisthat atemporal delay between low and high spatial frequency
channels (i.e. coarse processing precedes fine processing) would explain the
precedence of globd information (e.g., Breitmeyer, 1984; Ginsburg, 1986; Par-
ker et d., 1992; Marr, 1982; among many others). However, the psychological
literature has often neglected an important difference between globa and loca
processing on one hand, and scale perception on the other.

Figure 2 illustrates this difference. The figure shows a hybrid stimulus
composed of two letters, each represented at a different spatial scale. HSF
represent F (for Fine), and LSF represent C (for Coarse). The capability to
read F and C demonstrates that global processing may occur at the coarse
and the fine scales. A closer look at Fig. 2 should reveal that C and F are
both composed of little Ls (for Local). The possibility of reading these shows
that local processing can aso be accomplished at both scales. Shortly put,
Fig. 2 shows that coarse-to-fine is a processing mode orthogonal to global-
to-local. Global-to-local occurs in the two-dimensional image, but coarse-to-
fine takes place in another, n-dimensional scale space.* To picture the proper
relation existing between coarse-to-fine and global-to-local, imagine a third
axis orthogonal to the image plane. This axis represents n two-dimensional
image planes (one per scale; in Fig. 2, n = 2). Relevant recognition informa-
tion may be extracted locally, or globally from these different scales.

In sum, as illustrated in Figs. 1 and 2, the point of hybrid stimuli, as
opposed to Navon's letters, is that they explicitly multiplex (combine) differ-
ent information in scale space, and therefore allow to study new classes of
phenomena (the interactions between scale processing and recognition) that
Navon letters were not designed to address. It is the main goal of our experi-
ments to demonstrate that attention and recognition can selectively operate
in scale space, on the third axis orthogonal to the 2D image plane of globa
or local processing. This has important implications for theories of attention
and recognition that we discuss in the General Discussion.

Interactions of Categorization and Perception

Although there is considerable evidence that scale processing is prior to
many low-level visua tasks (including motion, saccade programming, depth

! Note that this distinction is usual in computational vision. For example, Braddick (1981, p.
10) states that *‘. . . frequency analysis is used at a rather low level to define features, which
themselves are part of a representation in the domain of space rather than spatial frequency.”
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perception, edge detection, stereopsis and global-to-local) the question re-
mains of how processes of scene and object categorization use the information
associated with spatial scales. The reviewed evidence would suggest a fixed
usage in which recognition uses coarse blobs before fine scale edges because
psychophysics revealed that L SF are perceptually available before HSF (see,
e.g., Breitmeyer, 1984; Ginsburg, 1986; Parker et a., 1992; Marr, 1982;
among many others).

Although possible, this scenario neglects the nature of the categorization
task (and its associated information requirements) the recognition system must
solve. If different spatial scales transmit different information about the input,
an identical scene might be flexibly encoded at the scale that optimizes the
information demands of the classification at hand. Although this assumes that
categorization processes can exert an influence on what is often considered
to berdatively low-level, encapsul ated processes (Fodor, 1983), recent studies
on the interactions between categorization and perception have revealed that
such influences could indeed exist (e.g., Schyns, Goldstone & Thibaut, in
press; Schyns & Murphy, 1991, 1994; Schyns & Rodet, 1997). For example,
Schyns and Rodet (1997) demonstrated that different subject groups could
orthogonally perceive identical stimuli as a result of categorizing and repre-
senting them. However, the determinant of these orthogonal perceptions was
the creation of different feature vocabulariesto represent new abstract shapes,
not the usage of different spatial scales for the recognition of realistic scenes.
Thus, although there is a growing body of evidence and arguments for the
stance that categorization influences perception in simple tasks (see also Gold-
stone, 1994), it remains an important empirical challenge to demonstrate that
the high-level constraint of using diagnostic (i.e., useful for the task at hand)
recognition information can change the perception of everyday objects and
scenes, as is expressed by their spatial scale encodings.

Standard stimuli do not separate spatia scaes and so one would never know
which scale was used for which scene classification. However, as explained
earlier, Schyns and Oliva's (1994) hybrid stimuli multiplex scene information
in scale space and therefore authorize the investigation of scale-dependent
recognition. Early studies revealed that hybrids (see Fig. 1) were preferentially
recognized in a coarse-before-fine sequence (Schyns & Oliva, 1994). In a
matching task, brief (30 ms) presentations of these stimuli elicited matchings
based on their coarse structures (city in Fig. 1). Longer (150 ms) presentations
of the same stimuli elicited the opposite matchings based on fine structures
(highway in Fig. 1). This effect was reproduced in a categorization task in
which an animated sequence of two hybrids was preferentialy categorized
according to a coarse-to-fine sequence, although the animation simultaneously
presented the fine-to-coarse sequence of another scene. However, because these
experiments did not test the interactions between different categorization tasks
and the perception of multiple scales, they could not distinguish between the
perceptua vs diagnosticity-driven scenarios of scale selection discussed earlier.
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The studies reported here investigate whether scale usage is fixed and
perceptually determined or whether it isflexible and diagnosticity-driven. The
first experiment used hybridsfor the visual priming of normal scenesto ensure
that both the LSF and the HSF of hybrids were available shortly after the
onset of visua processing. The second experiment changed the diagnosticity
of the coarse (or the fine) scale of hybrids to test whether diagnosticity would
affect the subsequent scale encodings of identical stimuli. Thethird and fourth
experiments tested the perceptual implications of categorizing hybrids at a
diagnostic scale. Experiment 3 tested whether the unattended scale of a scene
was sufficiently processed that it could prime the explicit categorization of a
subsequently presented scene across spatial scales. The nature (perceptual or
conceptual) of thisimplicit processing of the unattended scale was the object
of Experiment 4.

EXPERIMENT 1

Experiment 1 tests whether coarse and fine scales are both available at
the onset of scene categorization. A perceptually determined coarse-to-fine
recognition could arise, for example, because fine scale information is delayed
in early vision. Even though SF channels supposedly operate in paralel on
band-filtered images, speeded conditions of stimulation could affect the re-
cording of fine scale information. In their control stimuli, Schyns and Oliva
(1994) showed that the High Spatial Frequencies (HSF) of a scene stimulus
presented for only 30 ms were successfully matched with a normal picture
of the same scene. However, identical presentations of these HSF composed
with Low Spatial Frequencies (LSF) in a hybrid induced a bias for LSF
matches. Perhaps the LSF component of hybrids, and more generaly the
coarse spatial scale of natural scenes might prevent an adequate registration
of HSF information—for example because of an inhibition across SF channels
(Breitmeyer & Ganz, 1976), or because LSF tend to have a higher contrast
than HSF in natura stimuli. Such low-level interferences could naturally
promote a perceptual bias for perceiving coarse before fine.

Asfar as recognition (not low-level perception) is concerned, the important
issue is whether a low-level perceptual bias would be so constraining that it
would impose a mandatory coarse-to-fine recognition scheme. It is conceiv-
able that the time course of scale perception has little or no influence on the
initial scale that is used for recognition. In other words, early biases in scale
perception might not necessarily translate into the same biases in scale-based
recognition.

Experiment 1 addresses the issue of the availability of scale information.
It seeks to provide evidence that even a very short (30 ms), masked, exposure
to one hybrid stimulus successfully facilitates the naming of not one, but two
scenes—the LSF scene and the HSF scene the hybrid represents. Similar
L SF and HSF priming rates from the same hybrid images would suggest that
both scales similarly constrained recognition processes. Although this data
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would not strictly rule out avery early perceptual advantage for coarse infor-
mation, it would considerably diminish itsimpact on higher-level visual cogni-
tion—an aspect of the problem that is too often neglected in studies that
generalize from the psychophysics of sine-wave gratings to the recognition
of real-world pictures.

Methods
Subjects

Fifteen students from the Polytechnic National Institute of Grenoble, volunteered their time
to participate to a priming task. All had normal or corrected vision.

Simuli

Twelve hybrid stimuli were composed from four scene pictures (a highway, a city, a living
room, and a valley). Hybrids were composed by systematically mixing the LSF components of
aparticular scene (below 2 cycles/deg of visual angle) with the HSF components (above 6 cycles/
deg of visual angle) of the remaining scenes. The exact procedure for computing the hybrids is
detailed in Schyns and Oliva, 1994. Control stimuli were 4 L SF and 4 HSF, computed respectively
by low- and high-passing the 4 Normal (N) scene pictures. N primes comprised the LSF and
HSF component of the scenes. Hybrids and control stimuli added to a total of 24 primes. Targets
were always N pictures of the scenes. Stimuli subtended 6.4 X 4.4 degrees of visua angle on
the monitor of an Apple Macintosh Quadra.

Procedure

The experiment was composed of 120 trials. A trial consisted of the presentation of a prime
(either a LSF, HSF, N, LSF-Hybrid, or HSF-Hybrid stimulus) for 30 ms, immediately followed
by a mask composed of LSF and HSF noise for 40 ms (see Fig. 3), then by a N target picture
of one of the 4 scenes. Subjects’ task was to name the target scene as rapidly and as accurately
as they possibly could. It should be noted that a single hybrid stimulus can match with two
different target scenes, depending on which component (LSF or HSF) accomplishes the match.
A LSF-Hybrid (vs HSF-Hybrid) denotes the component (L SF vs HSF) of the hybrid that matches
with the target scene. For example, the LSF-Hybrid (vs HSF-Hybrid) condition of the hybrid of
Fig. 3 would require that the target is a city (vs highway). We composed 60 related trials (the
prime and the target were of the same scene) and 60 unrelated trials (the prime and the target
did not match). We recorded subjects’ naming latencies (reaction times) with a Lafayette vocal
key. Subjects were seated 150 cm from the screen, in adark experimental room. The experimenta-
tor stayed with the subject to record occurrences of naming errors.

Results and Discussion

As there were only four distinct category names in Experiment 1, the
naming task was very easy and subjects made no error. Reaction times that
corresponded to noisein the recording procedure were deleted from the analy-
sis. Priming rates were high in al conditions (see Table 1). Respectively, N
=72 ms, LSF = 37 ms, HSF = 32 ms, LSF-Hybrid = 25 ms, and HSF-
Hybrid = 47 ms. Remember that L SF-hybrid and HSF-hybrid are not different
stimuli, but the two priming conditions of the same hybrid. A two-way AN-
OVA (related/unrelated x prime type) revealed a main effect of priming,
F(1,14) = 39.81, p < .0001, a main effect of prime type, F(4,56) = 3.25,



Fic. 3. Thisfigureillustrates atrial of Experiment 1. The primeisin this case a hybrid stimulus
composed with the LSF of a city and the HSF of a highway. The mask is white noise with a
power spectrum similar to the one of natural scenes (see Schyns & Oliva, 1994). The target is
a Norma city scene. This trid is an instance of a LSF-Hybrid.




FLEXIBLE SCALE USAGE IN CATEGORIZATION 83

TABLE 1
Mean Naming Latencies as a Function of Priming Conditions
(N, LSF, LSF-Hybrid, HSF, HSF-Hybrid) in Experiment 1

Condition N LSF L SF-hybrid HSF HSF-hybrid
R (ms) 661 672 696 682 674
UR (ms) 733 709 721 714 721
Priming rate (ms) 72 37 25 32 47

p < .02, and a significant interaction, F(4,56) = 5.47, p < .001, revealing
that priming rates differed across conditions. Note that a significant priming
effect was found for each type of prime stimulus (Newman—Keuls, p < .05,
for al types of prime), and that an items analysis confirmed the main effect
of priming, F(1,11) = 77.97, p < .001.

As explained earlier, hybrids have a different interpretation associated with
each spatial scale. The results suggest that even a very short (30 ms), masked
presentation of one hybrid systematically facilitated the recognition of not
one, but two different scenes. To illustrate, the top picture of Fig. 3 success-
fully primed the recognition of city (when the target scene was anormal city)
and the recognition of highway (when the target was a highway). This suggests
that high contrast LSF did not prevent the perceptual registration of lower
contrast HSF. In fact, the priming rate of HSF and HSF-Hybrid was not
globally different from that of LSF and LSF-Hybrid, F(1,56) < 1, ns, sug-
gesting that both information were simultaneously available. However, a sys-
tematic LSF advantage could still be observed if the priming rates of LSF-
Hybrids were systematically greater than those of HSF-Hybrid. Interestingly,
the priming rates of LSF-Hybrid and HSF-hybrid were different, F(1,56) =
41.55, p < .001, but in adirection opposite to the coarse-to-fine interpretation!
Namely, HSF-Hybrid facilitated naming more strongly than did L SF-Hybrid.

Because the brief, 30 ms, masked presentation of LSF and HSF presented
in isolation, or added in an hybrid stimulus, al facilitated the recognition of
normal scenes, we can first conclude that LSF and HSF information were
available at the onset of visual processing. In a same-different paradigm,
Parker, Lishman, and Hughes (1996) also reported that coarse and fine scale
cues were equally effective, but that any difference favored fine scale cues.
The higher facilitation obtained for HSF-Hybrid with respect to L SF-Hybrid
isin agreement with Parker et a.’s findings. This suggests that the coarse-to-
fine recognition scheme reported for face (e.g., Breitmeyer, 1984; Fiorentini,
Maffei & Sandini, 1983; Sergent, 1982, 1986), object (e.g., Ginsburg, 1986),
and scene recognition (Parker et a., 1992; Schyns & Oliva, 1994) might not
necessarily result from one scale component being perceptually available
before the other. From the standpoint of availability of information, both
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scales appear to be available early. Experiment 2 explores the determinants
of their selection for recognition.

EXPERIMENT 2

Even though Experiment 1 provides evidence against a perceptual ly-driven,
coarse-to-fine recognition scheme, we still need to provide positive evidence
that classification processes can independently operate with one scale, or the
other. We hypothesized that recognition should preferentially use the scale
at which task-dependent, diagnostic information is present. It is generaly
difficult to test this hypothesis on familiar scene categories because one does
not know which scale information is diagnostic of which categorization. Fur-
thermore, there is evidence that expertise with object categories can change
the features that enter their representations (Schyns & Rodet, 1997; Tanaka &
Taylor, 1991). Consequently, different individuals might use different scales
for an identical categorization. We side-stepped this general difficulty by
aiming for an ‘‘existence proof’’ that flexible, diagnostic scale usage existed
in visual cognition. Our strategy was simply to assign diagnosticity to the
information content of one spatial scale and observe how this would influence
the subsequent processing of full-scale hybrids.

The experiment was a two-phase design in which subjects were asked to
categorize hybrid stimuli. In a sensitization phase, two groups of subjects
(the LSF and the HSF group) were initially exposed to hybrids that were
only meaningful at one scale (either LSF, or HSF), the other scale being
structured noise. For example, the top picture of Fig. 4 (that we call a LSF/
Noise hybrid) shows a city in LSF with structured noise in HSF. The bottom
picture (that we call a HSF/Noise hybrid) shows the same city in HSF to
which LSF noise is added. We expected that these stimuli would sensitize
categorization processes to seek scene cues at the diagnostic scale (either LSF
or HSF, depending on the experimental group). The testing phase followed
immediately, without any form of transition. Without subjects being aware,
the two scale components of the test hybrids were both meaningful (as in
Fig. 1). If recognition processes flexibly adjusted to seek cues at the diagnostic
scale, we should expect mutually exclusive categorizations (L SF vs HSF) of
the test hybrids in the experimental groups, without subjects being aware of
the other meaningful scene. This result would provide evidence against a
mandatory coarse-to-fine recognition scheme, and it would aso provide posi-
tive evidence that diagnosticity can flexibly change the scale that is used for
recognizing an identical visua input.

Methods
Subjects

Twenty-four adult subjects from INPG with normal or corrected vision volunteered their time
to participate in the experiment. They were randomly assigned to the LSF (vs. HSF) group with
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Fic. 4. This figure illustrates the stimuli used in the sensitization phase of Experiment 2. The
top picture is a LSF/Noise hybrid composed of the LSF of a city added to structured noise in
HSF. The bottom picture is a HSF/Noise resulting from the addition of the HSF of the same
city and LSF structured noise.
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the constraint that the number of subjects be equal in each group. For reasons to be later outlined,
data from only 23 subjects were analyzed.

Stimuli

Three types of hybrid stimuli were constructed (L SF/Noise, HSF/Noise and ambiguous) from
different pictures of four scene categories (city, highway, living room and bedroom). We synthe-
sized a total of 6 LSF/Noise (vs 6 HSF/Noise) sensitization stimuli by combining the LSF (vs
HSF) components of two distinct pictures of the categories with HSF (vs LSF) structured noise
(see Fig. 4). Test stimuli were ambiguous hybrids, computed as explained earlier by combining
the LSF and HSF components of two different scenes. We synthesized a total of 24 hybrids by
systematically combining two different pictures of four distinct categories with the constraint
that the two scenes composing each hybrid were of a different category. Hybrids subtended 6.4
X 4.4 deg of visual angle on the monitor of an Apple Macintosh.

Each hybrid (sensitization and test) was presented in a brief animation composed of three
successive frames—at a rate of 45 ms per frame, to ensure that they fused on the retina (the
total presentation time of the animation was 135 ms). Thefirst, second and third frames presented
the hybrid with low- and high-frequency cut-off points set at different cycles per/deg of visua
angle. In Frame 1, LSF represented all spatial frequencies below 2 cycles/deg, and HSF repre-
sented all spatial frequencies above 6 cycles/deg. The cut-offs were changed in Frame 2 and 3
in such a way that they met in Frame 3—i.e., LSF and HSF cut-offs were respectively 3 and 5
cycles/deg in Frame 2, and 4 and 4 cycles/deg in Frame 3.

These animations are important for our design. First, they present a full-spectrum stimulus to
visual perception, a requirement that is often missing in studies which reported a coarse-to-fine
process (e.g., Badcock et al., 1990; Hughes, 1986; Hughes et a ., 1996). Secondly, the animations
simultaneously presented a coarse-to-fine and a fine-to-coarse information sequence to the visua
system (coarse-to-fine in LSF, and fine-to-coarse in HSF). Studies that directly fed visual cogni-
tion with such sequences all reported a coarse-to-fine bias (Parker et a., 1992; Schyns & Oliva,
1994). Lastly, testing revealed that this technique produces a brief motion in scale space which
‘“‘locks’ attention on the spatial scale that is selected at the onset of recognition (either LSF or
HSF). Very few techniques exist in the literature that allow such locking on specific spatial
scales (see, Olzak et a., 1993, for a method using sine-wave gratings). Henceforth, when we
refer to hybrids, we mean these brief animations.

Procedure

Sensitization phase. L SF subjects were initially exposed to 6 LSF/Noise, and the HSF group
saw 6 HSF/Noise. In atrial, subjects would see a hybrid for 135 ms on a CRT monitor. Order
of trials were randomized with a 1.5 s interval between trials. Subjects’ task was to categorize
the hybrid by saying aloud one of four possible category names. As there was only one meaningful
scene in LSF/Noise and HSF/Noise stimuli, subjects could only succeed by attending to the
diagnostic scale (LSF or HSF).

Testing phase. Test stimuli were presented immediately after the sensitization stimuli, without
discontinuity in presentation. There are two ways to synthesize one hybrid from two scene
pictures, depending on which picture is assigned to the LSF (or HSF) component. Half of the
subjects of each group saw one version of the hybrids, and the other half saw the other version.
For example, the first half saw LSF cityl/HSF highwayl (block A) and the other half saw LSF
highway/HSF cityl (block B). There were 12 hybrids in each block. This strategy ensured a
balanced design, without repetition of trials. Note that the pictures used for sensitization were
not used for testing. The 12 hybrids of the testing phase were each presented as explained above,
and the entire experiment lasted for about 2 min. Subjects were instructed to respond as fast and
as accurately as they possibly could. We recorded the number of LSF (vs.) HSF categorizations
of the 12 ambiguous hybrids in each condition.

Debriefing. After the experiment, we asked subjects several questions about the stimuli. One
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TABLE 2
Percentages of LSF and HSF Categorizations of Hybrid Stimuli
in the Two Experimental Conditions of Experiment 2

Categorizations
Condition LSF HSF Error
L SF-group 73% 24% 3%
HSF-group 24% 2% 4%

of these questions was particularly important for the interpretation of the results. Subjects were
shown one hybrid stimulus composed of two meaningful scenes and were asked the following
question: ‘‘Here is a stimulus composed of two scenes. (The experimenter would then point out
to the two scenes.) Did you explicitly notice, or did you have the impression that there were
such stimuli during the experiment?”’

Results and Discussion

To ensure that the blocks A and B of test hybrids did not influence perfor-
mance, we first ran an ANOVA taking the LSF- vs HSF-group, block A vs
B and L SF vs HSF categorizations as factors. As neither the block factor nor
the interactions with LSF vs HSF categorizations were significant, we col-
lapsed the two blocks in each group. Subjects sensitized to the LSF scale
categorized 73% of ambiguous hybrids according to their LSF component,
while HSF subjects categorized 72% of the same stimuli on the basis of their
HSF information (see Table 2). A t test on the difference score between LSF
and HSF categorizations showed a significant difference between the groups,
t(22) = 6.61, p < .0001.

The data revealed mutually exclusive categorizations of identical stimuli.?
There are at least two possible interpretations of the opposite categorizations.
Subjects could simply notice that there were two meaningful scenes in the
12 hybrids, but strategically decide to report only the scale information con-
gruent with their sensitization phase. Another, perhaps more interesting inter-
pretation would propose that the sensitization phase influenced the way stimuli
were encoded prior to categorization. That is, although lower-level perception

2 An independent control group of 12 subjects was exposed to the 12 ambiguous hybrids
without a prior sensitization phase. No subject reported seeing two scenes in the hybrids. Of
these subjects, 4 were ‘*HSF categorizers'’ (at least 70% of HSF categorizations), 4 were *‘LSF
categorizers'’ (at least 80% of LSF categorizations) and 4 subjects categorized equally at both
scales. Across subjects, the averages were of 53% LSF and 45% HSF categorizations (the
remaining 2% were errors), t(11) = 0.47, ns. These results indicate that without sensitization to
a diagnostic scale, categorization processes can independently operate with one scale or the
other.
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would register the two spatial scales composing hybrids, diagnosticity would
bias perceptual encodings towards the informative scale.

In the debriefing phase, one of the questions specifically asked subjects
whether they noticed that two meaningful scenes composed a large number
of stimuli. 23 subjects (out of 24) reported seeing only one scene. These
subjects were surprised to learn that two-thirds of the hybrids were composed
of two scenes. Severa subjects reported that the scene was perceived as a
noisy picture—as if it was observed through a dirty window.

Together, the orthogonal, scale-based categorizations of identical pictures
suggest that scale selection for recognition is best understood as flexible and
‘‘diagnosticity-driven.”” It is doubtful that categorizations could be arbitrarily
maintained at a single spatial scale (when both scales were meaningful) if
scale selection was mandatorily fixed in low-level vision. Instead, it appears
that the processes of stimulus encoding were driven by the constraint of using
diagnostic scale information. Experiment 2 has far-reaching implications for
the possible interactions between categorization and perception that we fol-
low-up in Experiments 3 and 4.

EXPERIMENT 3

Experiment 1 suggested that coarse and fine information were both regis-
tered early in visual processing. Experiment 2 provided evidence that scale
diagnosticity (rather than perceptual determination) could explain scale usage
in recognition. One intriguing phenomenon that emerges is that subjects who
categorized the diagnostic scale were not aware of the information present at
the unattended scale. Were their percepts of hybrid stimuli limited to the
content of the diagnostic scale? When subjects categorized the diagnostic
scale, did they perceptually register the other scale, or did diagnosticity block
the perceptual registration of irrelevant information? If both scales were per-
ceptually registered, could information at the irrelevant scale still influence
the processing of the diagnostic scale? These new issues lie at the heart of
the interactions between categorization and lower-level perceptual processes.

Experiment 3 was designed to understand the nature of the influence of
scale diagnosticity on the processes of scale perception. Hybrid stimuli are
particularly well-suited to study this because they overlap two scenes at a
different scale. It is therefore possible to sensitize categorization to one scale
(as in Experiment 2) and to measure the influence of the unattended compo-
nent (if at all) across scales. Experiment 3 used a priming situation in which
subjects were asked to categorize a series of hybrid stimuli. Most of the
stimuli presented a LSF meaningful scene to which structured noise was
added in HSF and so we expected categorization to operate at the diagnostic
scale, asin the L SF group of Experiment 2. To test the perceptual registration
and the influence of the unattended scale, we interleaved a number of ambigu-
ous hybrids in the series of LSF/Noise (see Fig. 5). Importantly, the HSF
component of the ambiguous hybrids on trial n (see Fig. 5) represented the
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Fic. 5. This figure illustrates the design of Experiment 3. n — 1 and n + 1 are LSF/Noise
hybrids; n is an ambiguous hybrid. The succession of these three hybrids illustrates the gist of
the cross-frequency priming situation. The HSF component of n was the same scene as the LSF
component of n + 1, and so we expected a facilitation (a positive priming) of the LSF n + 1
categorization.
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same scene as the LSF component of the LSF/Noise on trial n + 1. This
identity of scenes (highway in the example) across scales was the gist of the
priming situation. If subjects registered the HSF of hybrid n when they explic-
itly categorized its LSF, a facilitation (positive priming) effect might be
observed for the LSF categorization on trial n + 1. Such priming would
indicate that although diagnosticity maintained categorization at one scale,
the perceptual registration and the implicit processing of the other scale was
not suppressed. Furthermore, it would demonstrate a priming of HSF on L SF,
which would not be expected in a standard coarse-to-fine recognition scheme.

Methods
Subjects

Subjects were 16 students from INPG who were paid to participate to the experiment. For
reasons to be later outlined, data from only 12 subjects were analyzed.

Simuli

Stimuli were the same as in Experiment 2: 6 LSF/Noise, 6 HSF/Noise, and 24 ambiguous
hybrids generated by combining together 2 pictures of 4 categories (city, highway, living room,
and bedroom), with the constraint that the two scenes composing a hybrid were of a different
category. As in Experiment 2, three-frame animations of the hybrids were presented (at a rate
of 45 ms per frame) with 2 and 6 cycles/deg, 3 and 5 cycles/deg and 4 and 4 cycles/deg cut-off
points for the first, second and third frame, respectively. Each animation lasted for 135 ms.

Procedure

Stimulus presentation was similar to Experiment 2 with a few differences. Sensitization and
ambiguous stimuli were not separated in two different sets but were instead interleaved throughout
the experiment. Another main difference was that we explicitly trained subjects on two categoriza-
tions of all LSF/Noise hybrids prior to the experiment, to ensure stable base-line categorization
latencies of the scenes.

Figure 5 details the priming situation. Stimulus n — 1 always was a L SF/Noise whose LSF
(city in the example) component was identical to the LSF of stimulus n. This was meant to
facilitate a LSF categorization of n, thereby reducing chances of its HSF categorization. The n
hybrid was always ambiguous. Its HSF component (highway on Fig. 4) aways represented the
same scene as the LSF component of the following L SF/Noise stimulus. This allowed the testing
of a priming of the HSF of n on the LSF of n + 1, across spatial resolutions (in the example,
apriming of HSF highway, when people categorize the L SF city, on the subsequent L SF highway
categorization). 1200 ms elapsed between the categorization of one hybrid and the presentation
of the next hybrid. Each of the 24 hybrids served as stimulus n in composing 24 triples, using
the appropriate n — 1 and n + 1 LSF/Noise.

Triples describe the organization of Related (R) trials. Triples were separated from one another
with one L SF/Noise stimulus, with the constraint that the scene represented in L SF was different
from the scenes composing the hybrids of the following triple. These 24 separators were used
to compute Unrelated (UR) trials. UR trials measured the time required to categorize n + 1, when
nwas aL SF/Noise stimulus—i.e., when there was no scene correspondence across resolutions. The
entire experiment was composed of a total of 96 trials (24 triples plus 24 LSF/Noise).

The 96 hybrids were decomposed into three blocks, A, B, and C and order of blocks were
counterbalanced across subjects. After each block, subjects could rest. Subjects’ task was to say
aoud the category name of each stimulus (LSF/Noise and ambiguous hybrids) as fast and as
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accurately as they possibly could. We recorded subjects’ reaction times with a Lafayette vocal-
key, as well as their categorization accuracy.

Debriefing

After the experiment, we asked subjects specific questions about the overall appearance of the
stimuli. In one of these questions, subjects were shown a hybrid stimulus composed of two
meaningful scenes and were asked the following question: ‘‘Here is a stimulus composed of two
scenes. Did you explicitly notice, or did you have the impression that there were such stimuli
during the experiment?’ We also asked subjects how the stimuli looked like, in general.

Results and Discussion

Subjects’ categorizations in Experiment 3 mirrored categorizations of the
L SF group in Experiment 2, with minor differences. As there were repetitions
of trials in Experiment 3, the proportion of subjects who noticed two scenes
in ambiguous hybrids grew to 4 in 16. Their data were discarded from the
analysis. In the remaining data, we also removed the reaction times of the
hybrids n and n + 1 for which a HSF categorization of the n stimulus
was observed, to ensure that priming was only measured after explicit LSF
categorizations of the ambiguous hybrids. An average of 2 triples (out of 24)
were removed per subject.

A 91% average of LSF categorizations of the ambiguous hybrids indicates
that subjects’ categorizations were reliably maintained at the diagnostic scale.
Although subjects systematically encoded and categorized LSF information,
the unattended HSF scale of trial n primed L SF classification on trial n + 1.
Priming rates were high between R and UR trials (29 ms, R = 566 ms and
UR = 595 ms), t(11) = 4.37, p < .01. It is worth emphasizing that these
priming rates were gathered on triples for which (1) subjects denied seeing
hybrids composed of two meaningful scenes and (2) for which subjects
categorization behavior controlled the scale at which hybrids were explicitly
processed.

The results revealed that the HSF of a picture implicitly facilitated the
explicit LSF categorization of the same scene across trials. This demonstrates
that while scale diagnosticity controls scale selection for recognition, it does
not block the perceptua registration of information at other scales. It is
interesting to note that this implicit registration of the irrelevant scale took
place when subjects explicitly categorized (and were only aware of) the
relevant information of the other scale. Furthermore, the implicit registration
was sufficient to influence the processing of a stimulus presented at another
scale 1.2 slater. The nature of the implicit processing is the object of Experi-
ment 4.

EXPERIMENT 4

Experiment 3 suggested that attention to, and explicit categorization of, a
diagnostic scale did not prevent the perceptual registration and the implicit
processing of the unattended scale. However, the question remains of the
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nature of this covert processing that priming revealed. Priming effects are
typicaly dichotomized into perceptual and semantic (see Farah, 1989, for a
review), and it is well known that any of these can occur without explicit
awareness of the prime stimulus (see Holender, 1986; Greenwald, Draine, &
Abrams, 1996 for reviews, and aso Klinger & Greenwald, 1995; Marcel,
1983; Merikle, 1982 for word recognition; Carr, McCauley, Sperber, & Par-
melee, 1982 for object recognition; Ellis, Young, & Koeken, 1993 for face
recognition). Unlike objects and words, however, evidence of priming across
spatial scales was never demonstrated before Experiment 3. Was this priming
conceptual, or perceptua? In other words, did the covert processing of the
unattended scale involve recognition, or wasit *‘simply’’ related to a percep-
tual registration of the entire scale space?

Following Shiffrin and Schneider (1977), we might expect that all meaning-
ful information in the two-dimensional visual field that reaches the eye should
be covertly recognized. Subjects should then recognize (even if implicitly)
the two scenes composing an ambiguous hybrid picture, because both of them
were simultaneously present in the 2D visual field. However, as discussed
earlier (see Fig. 2), the two scenes were represented at a different scale in a
space orthogonal to the 2D visual field, and Experiments 2 and 3 suggested
that subjects only recognized one of these scales at a time. This raises the
interesting possibility that recognition might only use the information associ-
ated with one spatial scale, even when meaningful information at another
scale coexists in the 2D visual field.

It was the aim of Experiment 4 to understand whether or not implicit
processing at an unattended scale involved recognition. To this end, we
used a priming paradigm similar to Experiment 3, but the primes and
targets were thistime different scene pictures of the same category. Exper-
iment 4 controlled similarity between primes and targets with two inde-
pendent measures:. The similarity judgments of human judges and the
similarities measured by a perceptually based metric. For each of the four
experimental categories (city, highway, bedroom, and valley), judges were
instructed to decide which scene exemplars were most perceptually simi-
lar or dissimilar to atarget scene. An objective, perceptually-based, trans-
lation invariant metric extracted the average energies of horizontal, diago-
nal, and vertical orientations of the scene pictures at multiple scales.
This metric was used to distinguish, across spatial scales, correlated and
uncorrelated exemplars of the same category.

From the outset, it is important to emphasize that we do not imply that
the metric is intended to capture everything there is to be captured about
low-level similarities in scene categories. Instead, the metric was used
as an independent, confirmatory measure that apparently similar (and
dissimilar) scenes were effectively perceptually similar (and dissimilar).
Intuitions about perceptual similarity can be very misleading as the fol-
lowing example illustrates. Imagine your were asked which one of the b,
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Fic. 6. This figure illustrates four of the pictures used to compute the hybrids of Experiment
4. Picture aiis the target whose L SF representation was named in a priming task. The three other
pictures served to compute the HSF primes in a design similar to the one presented in Fig. 5.
Human judges found picture b to be similar to a, but an objective metric rated them as dissimilar.
Judges found a and c to be similar, but the metric rated them as dissimilar. Both the judges and
the metric found d to be dissimilar to a These conditions of similarity were among those used
as priming conditions in Experiment 4.

¢, or d bedrooms of Fig. 6 is most similar to the a bedroom. Y ou would
probably select the b picture because both bedrooms are composed of
similar objects, the beds are similarly oriented, and so forth. However, it
appears that in terms of our metric which measures the energy of orienta-
tions of simple spatial scale filters (to be presented below) the bedroom
ais much more similar to c than to b.

Subjective and objective similarities were orthogonalized in the experi-
mental design. The similarity relationships between prime and target could
be one of four possibilities: judged similar and objectively similar (not
shown in Fig. 6), judged similar and objectively dissimilar (bedroom b
in Fig. 6), judged dissimilar and objectively similar (bedroom c in Fig.
6), judged dissimilar and objectively dissimilar (bedroom d in Fig. 6).
Our reasoning was that a covert perceptual processing of the unattended
scale—rather than a recognition—would be demonstrated if (1) the sub-
jectively similar and objectively correlated condition elicited positive
priming effects, and (2) the subjectively dissimilar and objectively uncor-
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related condition did not prime. These two conditions, together with the
fact that primes and targets were of the same category, would insure that
the covert processing of the unattended scale was not of a conceptual
nature—i.e., did not involve recognition.

Methods
Smilarity Metric

The similarity metric computes the Pearson correlation between two ranges of spatial scales,
from low to medium spatial frequencies and from medium to high spatial frequencies. Typicaly,
computation across spatial scales in machine vision seeks to correlate the boundaries of blobs
with the locations of fine-scale edges (see, e.g., Koenderink, 1984; Lindeberg, 1993; Marr &
Hildreth, 1980; Watt, 1987, 1991; Witkin, 1986). Evidence of such spatial correlations indicates
potentially useful object edges. However, without further processing, a similarity metric based
on these correlations would not have the desirable property of being shift-invariant (invariant to
translations of the component objects in the image).

An aternative, shift-invariant metric could directly use the overall intensity of the global and
local orientations of the input signal at different spatial scales. Similarity between LSF and HSF
would then be expressed in terms of how ‘‘vertical,”” how ‘‘horizontal,’”” and how *‘diagonal’’
inputs are at different spatial resolutions, irrespectively of the precise locations of the objects in
the scene. The main advantage of such a global, shift-invariant similarity metric is that it allows
a direct comparison of different scenes from the same category—because component objects
tend to change spatial location across scene exemplars. The main disadvantage of the metric is
that is removes the important information of the spatial locations of major scene components,
and these are known to affect the similarity of pictures across scales (Marr & Hildreth, 1980).
The metric, based on a Gabor rosace (Daugman, 1985) is detailed hereafter.

The computation of the metric starts with the amplitude spectrum of a 256 X 256 pixels scene
(obtained after a Fast Fourier Transform). The amplitude spectrum represents the signal in terms
of each component frequency at different orientations. The spectral density of the amplitude
spectrum is then obtained by squaring each amplitude value. Spatial frequencies can be indepen-
dently analyzed in the Fourier domain. That is, it is possible to understand how different spatial
components at a different orientation contribute to the entire signal. These relative contributions
were computed by covering the squared amplitude spectrum with a family of Gaussian filters,
to produce a Gabor rosace (see Fig. 7).

The Gaussian filters were centered one octave apart (which, from coarse to fine, translates
into 1 cycle every 64, 32, 16, 8, and 4 pixels). For each of the 5 frequency bands considered,
four filters were located at 0, 45, 90, and 135 deg of orientation in the two-dimensional amplitude
spectrum. Thus, atotal of 20 filters (5 frequency bands X 4 orientations) covered the amplitude
spectrum (see Fig. 7). The ‘‘convolution’” of each Gaussian filter with the spectral density
computed the energy of the input for each spatial band and orientation. These measurements
were summarized in a 20-dimensional vector that represented each scene. We then computed
pairwise correlations between the scenes, as explained below.

Subjects
Twenty-four students from the University of Glasgow were paid to participate in the
experiment.

Simuli

Objective similarity. Four scenes were chosen because they were most typical of each category
of the experiment (highway, city, bedroom, and valley). These scenes served as targets for
priming. Primes were selected from a total of 120 pictures (30 per category). The selection
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FiG. 7. Thisfigureillustrates the Gabor filtering procedure that served to compute the similarity
between scene pictures in Experiment 4. The two axis represent Fourier space. The circles
represent the Gaussian masks at different orientations and scales that were used to convolve the
squared amplitude spectrum. The output of this process was a 20-dimensional vector that was
used to compute correlations of scenes across spatial scales.

operated as follows. For each target, the Gabor rosace was computed as explained earlier. The
first 12 values of the 20 dimensional representation were extracted to represent the LSF of the
targets—the frequencies below or equal to 4 cycles/deg of visual angle. For each potential prime,
the last 12 values of the 20 dimensiona vectors were extracted to represent the HSF—the
frequencies above or equal to 4 cycles/deg of visual angle. A matrix was computed that correlated
the LSF 12-dimensional vector of each target with the HSF 12-dimensional vector of each
potential prime within the category. Overall, correlations ranged between .99 and —.05. In each
category, we then sorted the primes into highly correlated (a correlation above .6) and uncorre-
lated (a correlation below .15).

Subjective similarity. For each category, in the highly correlated set, 8 independent judges
were asked to chose two pictures: The most similar, and the most dissimilar to the target. In
addition, the judges were also requested to select a similar and a dissimilar scene in the uncorre-
lated set.

The conjunction of objective and subjective similarities authorized the construction of acontin-
gency table composed of four scene primes per category: SC (similar and correlated), SU (similar
and uncorrelated), DC (dissimilar and correlated) and DU (dissimilar and uncorrelated). The
actual correlations for each condition of the contingency table for each category are presented
in Table 3.

Hybrid stimuli. Two types of stimuli (ambiguous and L SF/Noise hybrids) were computed, as
in Experiment 3. The ambiguous hybrids systematically mixed the LSF component of one
stimulus of the four categories with the HSF component of the SC, SU, DC and DU primes of
the other categories. To illustrate, the LSF of a city were mixed with the HSF of al the primes
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TABLE 3
Correlation Values between LSF Encodings of the Target Scene and the Four HSF Encodings
of the Primes (SC, SU, DC, and DU) in the Categories of Experiment 4

Categories
Prime City Highway Bedroom Valley Means
SC 71 .60 .98 .89 .79
SU 15 —.07 A3 .14 .09
DC .83 .67 71 71 73
DU .06 .07 -1 -1 -.02

of the other three categories. Hence, the LSF component of the city was mixed with 12 prime
scenes. The HSF of these ambiguous hybrids on trial n served to prime the LSF of the LSF/
Noise on trial n + 1 (see Fig. 8). The systematic combination of one scene per category with
the primes produced a total of 48 ambiguous hybrids. A total of 144 L SF/Noise were produced
for this experiment.

Procedure

The priming structure of Experiment 4 was a triple of hybrids, as in Experiment 3 (see Fig.
8). That is, the HSF component of the hybrid on trial n was a scene of the same category as the
LSF component of the hybrid at n + 1. For example, in Fig. 8, the hybrid n mixes a bedroom
in LSF with a HSF city. The hybrid n + 1 is formed with the LSF of the target city and noisy
HSF. The priming condition between the HSF of n and the LSF of n + 1 could either be SC,
SN, DC, DN or neutral (i.e., noisy HSF on trial n). Hence, 60 triples composed the relevant
trials of the experiment (12 SC triples, 12 SN, 12 DC, 12 DN and 12 Neutral). All others trials
(180) were random presentations of the 144 different LSF/Noise stimuli. In total, Experiment 4
was composed of 360 trials.

In a sensitization phase, subjects were exposed to atotal of 72 LSF/Noise hybrids. These were
meant (1) to ensure that subjects would lock their categorizations to LSF, (2) to familiarize
subjects with the target L SF of the experiment, and (3) to stabilize categorization Reaction Times
(RT). In the experimental phase, subjects saw a total of 120 triples of hybrid stimuli that tested
all conditions of similarity between HSF primes and L SF targets. Subjects could pause every 8
triples. Subjects were instructed to name the scenes as fast and as accurately as they possibly
could (possible names were ‘‘highway,”” ‘‘city,”” ‘‘room,”” and ‘‘valley’’). A vocal key directly
linked to a Power Macintosh 7500/100 recorded categorization latencies. To ensure that RT
would not be too variable, instructions were given that subjects should keep a rhythm to their
naming.

Debriefing
Debriefing was identical to Experiment 2 and 3.

Results and Discussion

Four subjects were removed from the analysis because they noticed that
two scenes composed some of the items. Of the 20 remaining subjects, none
reported seeing an ambiguous hybrid in the experiment, even if they some-
times named HSF on trial n (on average, there were 4% of such HSF categori-
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Fic. 8. This figure illustrates the priming situation of Experiment 4. Note that the HSF of n
represent a different exemplar from the category represented in the LSF of n + 1.
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TABLE 4
Categorization Latencies (in Milliseconds), Priming Rate (in Milliseconds), and Error Rate
(in Percentages) in the Four Conditions (SC, SU, DC, DU, and N) of Experiment 4

Conditions
Prime SC SU DC DU N
RT (ms) 585 588 580 602 614
Priming rate (ms) 29 26 34 12 (.ns)
Error (%) 125 125 094 0.94 0.31

zations). L SF categorization accuracy was very high (95% correct for n trials
and 97% for LSF/Noise stimuli).

A general problem could be raised that in priming situations such as experi-
ments 3 and 4, HSF could interfere when subjects process the LSF of n trials.
This would result in slower processing of ambiguous hybrids with respect to
the speed of processing of LSF/Noise hybrids. However, an analysis of RT
did not reveal a significant difference between the average categorization
times of ambiguous hybrids (612 ms) and their equivalent LSF/noise (606
ms), t(19) < 1, ns. Thus, we can conclude that the meaningful HSF component
did not interfere with LSF processing of ambiguous hybrids.

We can now turn to the main objective of Experiment 4, which was to
understand the nature of the covert processing of the unattended HSF scale.
This can be approached by comparing the priming rates obtained (1) when
the similarity relationship changed between the HSF of trial n and the LSF
of trial n + 1 and (2) when people explicitly categorized LSF (both on
trial n and n + 1). In other words, covert processing can be studied when
categorization behavior controlled the attended scale, and when the similarity
between the unattended and attended scales was changed. Priming rate were
computed between the Neutral and each of the similarity conditions (SC, SU,
DC and DU). A one-way, within-subjects ANOVA with type of prime (Neu-
tral, SC, SN, DC and DN) revealed a main effect of prime type, F(4,76) =
7.277, p < .001 (priming rates are shown in Table 4).

Remember that we expected positive perceptual priming when the prime
and target were similar according to the judges, and correlated according to
the metric (the SC condition). A comparison between SC and neutral revealed
a significant positive priming of 29 ms, F(1,76) = 15.83, p < .001. The
other requirement to conclude that the priming was perceptua (as opposed
to conceptual) is that no priming should be observed when the judges and
the metric found the prime and target from the same category to be dissimilar
(the DU condition). A comparison between DU and neutral, revealed no
significant effect of priming—12 ms, F(1,76) = 2.58, ns. Hence, the covert
processing of HSF, when people explicitly categorized LSF, did not appear



FLEXIBLE SCALE USAGE IN CATEGORIZATION 99

to involve recognition. Instead, covert processing seemed to be of a perceptual
nature.

The remaining conditions of similarity inform further the covert perceptual
processing that took place. A positive priming effect was aso found in the
SU condition, when the prime was judged to be similar to the target, but
uncorrelated—26 ms, F(1,76) = 21.17, p < .001. In conjunction with the
previous results, this confirms that although our similarity metric captures
some aspects of similarity, it does not account for all of them. As explained
earlier, the metric is shift-invariant, but judges used the apparent correlation
of edges in the image to judge scene similarity. Our metric was not designed
to capture these correlations, but others have argued that they were important
in scale processing (e.g., Koenderink, 1984; Lindeberg, 1993; Watt, 1987,
1991; Witkin, 1986). However, our metric captures an aspect of low-level
similarity that judges did not perceive at al, and that spatia correlations of
edges across resolutions would not capture either. The DC condition (subjec-
tively dissimilar, objectively correlated, see Fig. 5, picture d) elicited a strong,
but counterintuitive facilitation—34 ms, F(1,76) = 21.67, p < .001. We can
explain effect in terms of the global activation of spatia filters across spatial
scales (i.e., how vertical, horizontal, and diagonal the images are at different
spatial resolutions). From amethodological standpoint, thisfacilitation consti-
tutes a warning for studies which would infer a conceptua priming on the
basis of such evidence. Our data suggest that there are hidden, non-intuitive
sources of perceptual similarities which might explain results that would
otherwise be taken as evidence of covert processing involving recognition,
or other semantic processing.

In sum, Experiments 3 and 4 were designed to understand the nature of
the influence of scale diagnosticity on the processing of spatial scales. Results
suggested that although scale diagnosticity can flexibly change the scale that
isused for scene categorization, the unattended component is still perceptually
registered and covertly processed. Detailed investigations in Experiment 4
suggested that this covert processing was of a low-level, perceptual nature.
We discuss the consequences of these results for the relationships between
categorization and perception in the General Discussion.

GENERAL DISCUSSION

Scale processing is a low-level task which has been shown to precede
many early visual tasks such as motion (Morgan, 1992), stereopsis (Legge &
Gu, 1989; Schor, Wood & Ogawa, 1984), depth perception (Marshall, Bur-
beck, Ariely, Rolland, & Martin, 1996) and saccade programming (Findlay,
Brogan, & Wenban-Smith, 1993). Following the psychophysics of sinewave
gratings, psychological and computational recognition research has often as-
sumed that coarse blobs should be recognized before fine boundary edges in
complex visual stimuli such as faces, objects, and scenes. However, this
scenario neglects the information demands of the recognition task, and the
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influence this might have on ‘‘information picking'’ strategies in scale space.
The main objective of this paper was to study an alternative scenario in which
scale usage for recognition results from an interaction between the high-
level constraint of locating diagnostic scale information and the mandatory
registration of multiple spatial scales.

Results of Experiment 1 showed that contrary to the idea that scales are
mandatorily recognized from coarse to fine, very brief presentations (30 ms)
of hybrid stimuli primed the categorization of not one, but two scenes (the
LSF and the HSF scenes composing the hybrids). This suggested that the
time course of low-level scale processing might impose little constraint on
the actual selection of the scale that is used for recognizing the input. Results
of Experiment 2 demonstrated that the determinant of scale selection could
be the presence of task-dependent, diagnostic information (coarse or fine) at
a spatial scale. In Experiment 2, attention was selectively, and implicitly
directed to the diagnostic scale, without subjects even being aware of the
meaningful information presented at the other scale. Experiment 3 and 4
studied the implications of such ‘‘diagnosticity-driven’’ recognition scheme
(Schyns, 1996) on the actual perception and processing of spatial scales.
Experiment 3 revealed that subjects who categorized explicitly the diagnostic
scale implicitly registered the irrelevant scale, which subsequently influenced
explicit recognition. Experiment 4 suggested that covert processing at the
irrelevant scale did not involve recognition. Together, Experiments 1 to 4
support our proposal of a flexible, and diagnosticity-driven—rather than a
fixed, perceptually determined—usage of spatial scales in visual cognition.

The idea that the information requirements of a categorization task can
exert a strong influence on low-level processes such as scale perception raises
a number of new issues in visual cognition. They all revolve around the
precise nature of the interactions existing between high-level information
demands and low-level information constraints in explanations of recognition
performance (see also Schyns, 1996; Schyns, Goldstone, & Thibaut, in press;
Schyns & Rodet, 1997). The remaining sections discuss these new issues.

Implications for Attentional Research

Theories of visual attention generally oppose the ‘‘spotlight’” and the
‘*zoom lens’ models. The spotlight model operates in the 2D visua field.
Attention is characterized by a diameter (the region of the field that is at-
tended) and it cannot be divided between two regions (see, e.g., Posner, 1978,
1980; Posner, Snyder & Davidson, 1980; but see also Pylyshyn & Storm,
1988, for evidence that attention can be divided). The zoom lens model
proposes that a wide field of view can be covered when resolution is poor,
but that enhancement of resolution narrows down the field of view that is
covered (Murphy & Eriksen, 1987). Shortly put, the spotlight model only
operatesin the 2D visual field and istherefore very similar to the characteriza-
tion of global-to-local processing discussed earlier, while the zoom lens meta-
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phor simultaneously operates in the visua field and in scale space and is
more similar to the conception of attention that emerges from our studies.
However, our studies augment this conception of attention with new properties
of recognition that are discussed in the next sections.

In Experiments 3 and 4, we obtained positive priming effects in a paradigm
overlapping stimuli which tends to elicit negative priming effects (e.g.,
DeSchepper & Treisman, 1996; Tipper, 1985; Tipper & Driver, 1988; Treis-
man & DeSchepper, in press). In negative priming paradigms, the unattended
component of an overlapped stimulus on trial n interferes with the recognition
of the attended component on trial n + 1, even when instructions explicitly
draw attention to only one component—e.g., ‘‘look at the red objects, not
the overlapping green objects,’” (see Allport, Tipper & Chmiel, 1985;
DeSchepper & Treisman, 1996; Rock & Gutman, 1981; Tipper & Driver,
1988; Treisman & DeSchepper, in press). However, our results show afacilita-
tion effect in a similar priming situation.

In our studies, as opposed to negative priming studies, subjects were never
instructed that some stimuli overlapped two meaningful components, and we
did not explicitly instruct them to neglect some information. Instead, the
implicit constraint of locating recognition information in scale space locked
subjects’ categorizations to a diagnostic scale. Furthermore, results of Experi-
ment 4 suggested that the unattended scale was not recognized. It is therefore
less surprising that we observed a facilitation rather than an interference. An
interference (negative priming) should imply that the neglected aspect of
overlapped stimuli is at least implicitly recognized (e.g., Rock & Gutman,
1981; Tipper & Driver, 1988), but again, this was not the case in our studies.
Together, results of Experiments 2, 3, and 4 suggest (1) that attention can be
implicitly drawn to a diagnostic scale in a space orthogona to the 2D visua
field, (2) that we are only able to attend to one scale at a time and (3) that
we only recognize the scale we attend to, but that we nonetheless register
the other scale.

These suggestions raise the interesting possibility that attention operates
along two orthogonal dimensions. Along the first (and little studied) dimen-
sion, attention would be initially driven to the scale that is diagnostic of the
recognition task; scale-specific cues would then serve as a basis to recognize
the input stimulus. Along the second (and well studied, see Treisman, 1987;
Eriksen & St James, 1986; Eriksen & Yeh, 1985; Paquet & Merikle, 1988)
dimension, the attentional window would specify the size of the processed area
of theimage at the selected scale. Recognition would here operate explicitly in
the attentional window, and implicitly outside the window.

Our emphasis on the prior perceptual selection of aspatial scalefor recogni-
tion is in line with the recent proposal of Phillips and Singer (in press) that
context (that we defined as a search for diagnostic, task-dependent informa-
tion) could tune the selectivity and responsiveness of different spatial filters
to modulate the neurophysiological filtering of relevant information. Relat-
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edly, He, Cavanagh and Intriligator (1996, pp. 334—335) suggested that **. . .
spatia resolution is limited by an attentional filter acting beyond the primary
visual cortex . . .’ and that **. . . the attentional filter acts in one or more
higher visual cortical areas to restrict the availability of visual information
to conscious awareness.”’ Experiments 2, 3, and 4 provided converging evi-
dence that subjects who categorized the diagnostic scale were unaware of
information at the other scale. The actual testing of a diagnosticity-driven
attentional mechanism in scale space clearly deserves further research in
object and scene recognition.

Implications for Object and Scene Categorization Research

The idea that recognition could flexibly pick the scale information best
suited to the task at hand has been neglected in recognition theories. Speci-
fying a scale space for recognition, testing its plausibility and studying pro-
cessing constraints within this scale space introduces new perspectives on
visual processing. So far, recognition theories tend to assume that processing
occurs at the finest scales with highly processed information, but our research
demonstrated that processing could also use coarse scale, comparatively
cruder information.

The structure of scale information for different categorizations of an identi-
cal face, object or scene should become an important topic of future recogni-
tion research (Schyns & Oliva, in press). There is little doubt that different
scales limit the nature of the information that can be extracted (e.g., Burt &
Adelson, 1983; Lindeberg, 1993). However, it ismuch less clear how different
categorizations of an identical object or scene could utilize this scale informa-
tion. Research may reveal that very crude information is sufficient to distin-
guish, e.g., indoor from outdoor scenes, but that comparatively finer spatial
cues would be required for a city (and even finer for a New York) categoriza-
tion. The metric outlined in Experiment 4 could be used to start to map the
hierarchical organization of categories with the hierarchical organization of
scale information. When one scale would be shown to subsume a particular
categorization, the scale-specific visual cues subserving this categorization
could then be studied. It could also be tested how the addition of diagnostic
chromatic cues facilitate recognition at different scales (e.g., Oliva& Schyns,
1996; Wurm, Legge, Isenberg & Luebker, 1993).

Theresearch presented in this paper emphasizesthe importance of explicitly
studying recognition phenomena as interactions between categorization de-
mands and perceptually available information. It borrows to categorization
studies the notion of feature diagnosticity; the ideathat specific visual cuesare
used for specific categorizations. Perception research reveals the perceptual
materials with which categorization processes interact. The interactions be-
tween the information demands of atask and perceptually available informa-
tion can explain the usage of image cues for object and scene recognition.
This ‘*diagnostic recognition’’ framework has been proposed as a generic
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approach to explain face, object, and scene categorization performance (see
Hill, Schyns & Akamatsu, 1997; Schyns, 1996). We believe that diagnostic
recognition is a necessary step forward in face, object, and scene categoriza-
tion studies.
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