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Building the gist of a scene: the role of global image
features in recognition
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Abstract: Humans can recognize the gist of a novel image in a single glance, independent of its complexity.
How is this remarkable feat accomplished? On the basis of behavioral and computational evidence, this
paper describes a formal approach to the representation and the mechanism of scene gist understanding,
based on scene-centered, rather than object-centered primitives. We show that the structure of a scene
image can be estimated by the mean of global image features, providing a statistical summary of the spatial
layout properties (Spatial Envelope representation) of the scene. Global features are based on configu-
rations of spatial scales and are estimated without invoking segmentation or grouping operations. The
scene-centered approach is not an alternative to local image analysis but would serve as a feed-forward and
parallel pathway of visual processing, able to quickly constrain local feature analysis and enhance object
recognition in cluttered natural scenes.
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Introduction

One remarkable aspect of human visual perception
is that we are able to understand the meaning of a
complex novel scene very quickly even when the
image is blurred (Schyns and Oliva, 1994), or pre-
sented for only 20ms (Thorpe et al., 1996). Mary
Potter (1975, 1976, see also Potter et al., 2004)
demonstrated that during a rapid presentation of
a stream of images, observers were able to iden-
tify the semantic category of each image as well
as a few objects and their attributes. This rapid
understanding phenomenon can be experienced
while looking at modern movie trailers which uti-
lize many fast cuts between scenes: with a mere
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glimpse of each picture, you can identify each
shot’s meaning, the actors and the emotion de-
picted in each scene (Maljkovic and Martini, 2005)
even though you will not necessarily remember the
details of the trailer. The amount of perceptual
and semantic information that observers compre-
hend within a glance (about 200ms) refers to the
gist of the scene (for a review, Oliva, 2005). In this
paper, we discuss two main questions related to
rapid visual scene understanding: what visual in-
formation is perceived during the course of a
glance, and which mechanisms could account for
the efficiency of scene gist recognition.

Research in scene understanding has tradition-
ally treated objects as the atoms of recognition.
However, behavioral experiments on fast scene
perception suggest an alternative view: that we
do not need to perceive the objects in a scene to
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identify its semantic category. The semantic cate-
gory of most real-world scenes can be inferred from
their spatial layout (e.g., an arrangement of basic
geometrical forms such as simple Geons clusters,
Biederman, 1995; the spatial relationships between
regions or blobs of particular size and aspect ratio,
Schyns and Oliva, 1994; Sanocki and Epstein, 1997;
Oliva and Schyns, 2000). Fig. 1 illustrates the im-
portance of the spatial arrangement of regions for
scene and object recognition. When looking at the
image on the left, viewers describe the scene as a
street with cars, buildings and the sky. Despite the
fact that the local information available in the im-
age is insufficient for reliable object recognition,
viewers are confident and highly consistent in their
descriptions. Indeed, the blurred scene has the spa-
tial layout of a street. When the image is shown in
high resolution, new details reveal that the image
has been manipulated and that the buildings are in
fact pieces of furniture. Almost 30% of the image
pixels correspond to an indoor scene. The misin-
terpretation of the low-resolution image is not a
defect of the visual system. Instead, it illustrates the
strength of spatial layout information in constrain-
ing the identity of the objects in normal conditions,
which is especially evident in degraded conditions in
which object identities cannot be inferred based
only on local information (Schyns and Oliva, 1994).

In this paper, we examine what is the initial rep-
resentation of a complex, real-world scene image
Fig. 1. Illustration of the effect of a coarse layout (at a resolution of

Despite the lack of local details in the left blurred scene, viewers are co

high-resolution image reveals that the buildings are in fact furnitur

Instead, it illustrates the strength of the global spatial layout in constr
that allows for its rapid recognition. According to
the global precedent hypothesis advocated by
Navon (1977) and validated in numerous studies
since (for a review see Kimchi, 1992), the processing
of the global structure and the spatial relationships
between components precede the analysis of local
details. The global precedence effect is particularly
strong for images constituted of many element pat-
terns (Kimchi, 1998), as it is the case of most real-
world scene pictures.

To clarify the terminology we will be using in this
article, in the same way that ‘‘red’’ and ‘‘vertical’’
are local feature values of an object (Treisman and
Gelade, 1980), a specific configuration of local fea-
tures defines a global feature value of a scene or an
object. For instance, an image composed of vertical
contours on the right side and horizontal contours
on the left side could be estimated by one global
feature-receptive field tuned to respond to that spe-
cific ‘‘Horizontal–Vertical’’ configuration. Global
feature inputs are estimated by summations of local
feature values but they encode holistic properties of
the scene as they convey the spatial relationships
between components. On the basis of behavioral
and computational experiments, we show the rele-
vance of using a low-dimensional code of the spatial
layout of a scene, termed global image features, to
represent the meaning of a scene. Global features
capture the diagnostic structure of the image, giving
an impoverished and coarse version of the principal
8 cycles/image) on scene identification and object recognition.

nfident in describing the spatial layout of a street. However, the

e. This misinterpretation is not an error of the visual system.

aining the identities of the local image structures (Navon, 1977).
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contours and textures of the image that is still de-
tailed enough to recognize the image’s gist. One of
the principal advantages of the global image coding
described here lies in its computational efficiency:
there is no need to parse the image or group its
components in order to represent the spatial con-
figuration of the scene.

In this paper, we examine (1) the possible content
of the global structure of a natural scene image,
based on experimental results from the scene rec-
ognition literature; (2) how the global scene struc-
ture can be modeled and (3) how the global features
could participate in real-world scene categorization.
The role of global image features on scene

perception: experimental evidence

There is considerable evidence that visual input is
processed at different spatial scales (from low to
high spatial frequency), and psychophysical and
computational studies have shown that different
spatial scales offer different qualities of information
for recognition purpose. On the one hand, the
shape of an object is more precisely defined at high
spatial frequencies but the object boundaries are
interleaved by considerable noise, which requires
Fig. 2. (A) The two original images used to build the hybrid scenes

frequency (HSF, 24 cycles/image) of the beach and the low spatial fre

blink, or defocus, the street scene should replace the beach scene (if

perception changes). (C) The complementary hybrid image, with the

Oliva, 1994; Oliva and Schyns, 1997).
extensive processing to be filtered out (among oth-
ers, Marr and Hildreth, 1980; Shashua and Ullman,
1988). On the other hand, low-scale resolution is
more contrasted and might be privileged in terms of
temporal processing than finer scale (Navon, 1977;
Sugase et al., 1999), but this perceptual advantage
might be offset by higher uncertainty about the
identity of the blobs.

In a series of behavioral experiments, Oliva and
Schyns evaluated the role that different spatial
frequencies play in fast scene recognition. They
created a novel kind of stimuli, termed hybrid im-
ages (see Fig. 2), by superimposing two images at
two different spatial scales: the low spatial scale is
obtained by filtering one image with a low-pass
filter (keeping spatial frequencies up to 8 cycles/
image), the high spatial scale is obtained by filter-
ing a second image with a high-pass filter (fre-
quencies above 24 cycles/image). The final hybrid
image is composed by adding these two different
filtered images (the filters are designed in such a
way that there is no overlapping between the two
images in the frequency domain). The examples in
Fig. 2 show hybrid images combining a beach
scene and a street scene.

The experimental results using hybrid stimuli
showed that for short presentation time (30ms,
shown above. (B) A hybrid image combining the high spatial

quency (LSF, 8 cycles/image) of the street scene. If you squint,

this demonstration fails, step back from the image until your

street scene in HSF and the beach scene in LSF (cf. Schyns and
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followed by a mask, Schyns and Oliva, 1994), ob-
servers used the low spatial frequency part of hy-
brids (street in Fig. 2B) when solving a scene
recognition task, whereas for longer (150ms) dura-
tions of the same image, observers categorized the
image on the basis of the high spatial frequencies
(e.g., beach in Fig. 2B). In both cases, participants
were unaware that the stimuli had two interpreta-
tions. It is important to stress that this result is not a
evidence for a preference of the low spatial frequen-
cies in the early stages of visual processing: addi-
tional experiments (Oliva and Schyns, 1997; Schyns
and Oliva, 1999) showed that, in fact, the visual
system can select which spatial scale to process de-
pending on task constraints (e.g., if the task is de-
termining the type of emotion of a face, participants
will preferentially select the low spatial frequencies,
but when the task is determining the gender of the
same set of faces, participants used either low or
high spatial frequencies). Furthermore, priming
studies showed that within a 30-ms exposure, both
low and high spatial frequency bands from a hybrid
image were registered by the visual system 1 (Parker
et al., 1992, 1996; Oliva and Schyns, 1997, Exp.1),
but that the requirements of the task determined
which scale, coarse or fine, was preferentially se-
lected for covert processing. This suggests that
the full range of spatial frequency scales is avail-
able with only 30ms of image exposure, although
the resolution at which the local features are anal-
yzed and preattentively combined, when embedded
in cluttered natural images, is unknown.

However, hybrid images break one important
statistical property of real-world natural images,
i.e., the spatial scale contiguity. To the contrary of
hybrid images, contours of a natural image are
correlated across scale space: a contour existing at
low spatial frequency exists also at high spatial
frequency. Moreover, statistical analysis of the
distributions of orientations in natural images has
shown that adjacent contours tend to have similar
orientations whereas segments of the same contour
that are further apart tend to have more disparate
1A hybrid scene presented for 30 ms and then masked would

prime the recognition of a subsequent related scene, matching

either the low- or the high-spatial scale of the hybrid (Oliva and

Schyns, 1997, Exp. 1).
orientations (Geisler et al., 2001). The visual sys-
tem could take advantage of spatial and spectral
contiguities of contours to rapidly construct a
sketch of the image structure. Boundary edges that
would persist across the scale space are likely to be
important structures of the image (Linderberg,
1993), and would define an initial skeleton of the
image, fleshed out later by finer structures existing
at higher spatial frequency scales (Watt, 1987;
Linderberg, 1993; Yu, 2005). Most of the contours
in natural scenes need selective attention to be
bound together to form a shape of higher com-
plexity (Treisman and Gelade, 1980; Wolfe and
Bennet, 1997; Wolfe et al., 2002), but contours
persistent through the scale space might need
fewer attentional (or computational) resources to
be represented early on. Therefore, one cannot
dismiss the possibility that the analysis of fine
contours and texture characteristics could be per-
formed at the very early stage of scene perception,
either because low spatial frequency luminance
boundaries bootstrap the perceptual organization
of finer contours (Lindeberg, 1993), or because the
sparse detection of a few contours is sufficient to
predict the orientation of the neighborhood edges
(Geisler et al., 2001), or because selective attention
was attending to information at a finer scale (Oliva
and Schyns, 1997).

Within this framework, the analysis of visual in-
formation for fast scene understanding proceeds in
a global to local manner (Navon, 1977; Treisman
and Gelade, 1980), but not necessarily from low to
high spatial frequencies. In other words, when we
say ‘‘global and local’’ we do not mean ‘‘low and
high’’ spatial frequencies. All spatial frequencies
contribute to an early global analysis of the scene
layout information, but organized at a rather coarse
layout. Fine image edges, like long contours,
are available, but their spatial organization is not
encoded in a precise way. In the rest of this section
we discuss some of the possible mechanisms used
for performing the global analysis of the scene.

A simple and reliable global image feature for
scene recognition is obtained by encoding the
organization of color blobs in the image (under this
representation a view of a landscape corresponds to
a blue blob on the top, a green blob on the bottom
and a brownish blob in the center, e.g., Lipson et al.,
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1997; Oliva and Schyns, 2000; Carson et al., 2002).
Despite the simplicity of such a representation, it is
remarkable to note the reliability of scene recogni-
tion achieved by human observers when shown a
very low-resolution scene picture. Human observers
are able to identify most of real-world scene catego-
ries based on a resolution as low as 4 cycles/images,
but only when the blurred image is in color. If the
images are presented in gray levels, performance
drop and participants need to see higher-resolution
images before achieving the same recognition per-
formance: the performance with a color image at 4
cycles/image is achieved at a resolution of 8 cycles/
image for a grayscale image (Oliva and Schyns, 2000,
Exp. 3).

However, color blobs are not equally important
for all the scenes. The diagnosticity of colored sur-
faces in an image seems to be a key element of fast
scene recognition (Oliva and Schyns, 2000; Goffaux
et al., 2005). In order to study the importance of
color information, color images were altered by
transforming their color modes (e.g., red surfaces
became green, yellow surfaces became blue). This
provides a way of understanding if color is helping
as a grouping cue (and therefore the specific color is
not important) or if it is diagnostic for the recog-
nition (the color is specific to the category). For
presentation time as short as 30ms, Oliva and
Schyns (2000) observed that altering colors im-
paired scene recognition when color was a diag-
nostic feature of the scene category (e.g., forests are
greenish, coasts are bluish) but it had no detrimen-
tal effect for the recognition of scenes for which
color was no diagnostic (e.g., some categories of
urban scenes). The naming of a colored scene, rel-
ative to a grayscale scene image, was faster if it
belonged to a category from which the colors dis-
tributions did not vary greatly across exemplars (for
natural scenes like forest, coast, canyons), than for
scene categories where color distribution varied
(for indoors scenes, urban environments, see also
Rousselet et al., 2005). Colored surfaces, in addition
to providing useful segmentation cues for parsing
the image (Carson et al., 2002), also informs about
semantic properties of a place, such as its probable
temperature (Greene and Oliva, 2005). The neural
correlates of the role of color layout has been re-
cently investigated by Goffaux et al. (2005), who
have observed an Event-Related Potential (ERP)
frontal signal 150ms after image onset (a well-doc-
umented temporal marker of image categorization,
Thorpe et al., 1996; Van Rullen and Thorpe, 2001),
when observers identified normally colored scene
pictures (e.g., a green forest, a red canyon) com-
pared to their grayscale or abnormally colored ver-
sion (e.g., a purple forest, a bluish canyon). In a
similar vein, Steeves et al. (2004) have shown that
an individual with a profound visual form agnosia
(i.e., incapable of recognizing objects based on their
shape) could still identify scene pictures from colors
and texture information only. Their fMRI study
revealed higher activity in the parahippocampal
place area (Epstein and Kanwisher, 1998) when the
agnostic patient was viewing normally colored
scenes pictures than when she was viewing black
and white pictures.

In addition to color, research has shown that the
configuration of contours is also a key diagnostic
cue of scene categories (Baddeley, 1997; Oliva and
Torralba, 2001; Torralba and Oliva, 2003; McCot-
ter et al., 2005) and can help to predict the pres-
ence or absence of objects in natural images
(Torralba, 2003a; Torralba and Oliva, 2003).
Basic-level classes of environmental scenes (forest,
street, highway, coast, etc.) as well as global prop-
erties of the three-dimensional (3D) space (e.g., in
perspective, cluttered) can be determined with a
high probability from a diagnostic set of low-
level image features (Oliva and Torralba, 2001;
Walker Renninger and Malik, 2004; Fei-Fei and
Perona, 2005). For instance in urban environ-
ments, an estimation of the volume that a scene
subtends is well predicted by the layout of oriented
contours and texture properties. As the volume of
scene space increases, the perceived image on the
retina changes from large surfaces to smaller
pieces, increasing the high spatial frequency con-
tent (Torralba and Oliva, 2002). A different pat-
tern is observed when looking at a natural scene:
with increasing distance from the observer, natural
surfaces become larger and smoother, so for
a given region in the image, the texture becomes
coarser.

In the following section, we suggest an opera-
tional definition of global image features. The global
features proposed encode a coarse representation of
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the organization of low and high spatial frequencies
in the image.
Fig. 3. Illustration of a local receptive field and a global recep-

tive field (RF). A local RF is tuned to a specific orientation and

spatial scale, at a particular position in the image. A global RF is

tuned to a spatial pattern of orientations and scales across the

entire image. A global RF can be generated as a combination of

local RFs and can, in theory, be implemented from a population

of local RFs like the ones found in the early visual areas. Larger

RFs, which can be selective to global scene properties, could be

found in higher cortical areas (V4 or IT). The global feature

illustrated in this figure is tuned to images with vertical structures

at the top part and horizontal component at the bottom part,

and will reply strongly to the scene street image.
Building a scene representation from global image

features

High-level properties of a scene such as the degree
of perspective or the mean depth of the space that
the scene subtends have been found to be corre-
lated with the configuration of low-level image
features (Torralba and Oliva, 2002, 2003). Evi-
dence from the psychophysics literature suggest
that our visual system analyzes global statistical
summary of the image in a preselective stage of
visual processing, or at least with minimal attent-
ional resources (mean orientation, Parkes et al.,
2001; mean of set of objects, Ariely, 2001; Chong
and Treisman, 2003). By pooling together the ac-
tivity of local low-level feature detectors across
large regions of the visual field, we can build a
holistic and low-dimensional representation of the
structure of a scene that does not require explicit
segmentation of image regions and objects (as in
Oliva and Torralba, 2001) and therefore require
very low computational (or attentional) resources.
This suggests that a reliable scene representation
can be built, in a feed-forward manner, from the
same low-level features used for local neural rep-
resentations of an image (receptive fields of early
visual areas, Hubel and Wiesel, 1968).

For instance, in a forest-scene picture, the shape
of a leaf can be estimated by a set of local recep-
tive fields (encoding oriented edges). The shape of
the whole forest picture can be summarized by the
configuration of many small-oriented contours,
distributed everywhere in the image. In the case of
the forest scene, a global features encoding ‘‘fine-
grained texture everywhere in the image’’ will pro-
vide a good summary of the texture qualities found
in the image. In the case of a street scene, we will
need a variety of global features encoding the per-
spective, the level of clutter, etc. Fig. 3 illustrates a
global receptive field that would respond maxi-
mally to scenes with vertical structures at the top
part and horizontal components at the bottom
part (as in the case of a street scene).
Given the variability of layout and feature dis-
tribution in the visual world, and given the vari-
ability of viewpoints that an observer can have on
any given scene, most real-world scene structures
will need to be estimated not only by one, but by a
collection of global features. The number of global
features that can be computed is quite high. The
most effective global features will be those that
reflect the global structures of the visual world.
Several methods of image analysis can be used to
learn a suitable basis of global features (Vailaya
et al., 1998; Oliva and Torralba, 2001; Vogel and
Schiele, 2004; Fei-Fei and Perona, 2005) that cap-
ture the statistical regularities of natural-scene
images. In the modeling presented here, we only
consider global features of receptive fields meas-
uring orientations and spatial frequencies of image
components that have a spatial resolution between
1 and 8 cycles/image (see Fig. 5). We employed a
basis derived by principal component analysis to
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perform on a database of thousands of real-world
images.

We summarize here the steps performed for
learning a set of global features corresponding to
the statistical configuration of orientation and spa-
tial frequencies existing in the real world. Each glo-
bal feature value is a weighted combination of the
output magnitude of a bank of multiscale-oriented
filters. In order to set the weights, we use principal
components analysis (PCA). Due to the high di-
mensionality of images, applying PCA directly to
the vector composed by the concatenation of the
output magnitudes of all the filters will be very ex-
pensive computationally. Several regularization
techniques can be used. Here, we decided to reduce
the dimensionality of the vector of features by first
downsampling each filter output to a size N � N

(with N ranging from 2 to 16 in the computation
performed here). All the filter outputs were down-
sampled to the same image size, independently of
the scale of the filter. As a result, each image was
represented by a vector of N�N�K values (K is
the number of different orientation and scales, and
N�N is the number of samples used to encode, in
low resolution, the output magnitude of each filter).
This gives, for each image, a vector with a relatively
small dimensionality (few hundreds of elements).
The dimensionality of this vector space is then re-
duced by applying PCA to a collection of 22,000
Fig 4. The principal components of natural image statistics define the

are obtained by applying principal component analysis (PCA) to the

natural images. The top row shows the 2nd to the 8th principal comp

The first component behaves as a global average of the output of all o

row shows the PCs for a resolution of 4 cycles/image (8� 8 regions).

frequencies are in the center of the plot), how the spatial scale and

corresponds to positive value and the black to negative value. Here w
images (the image collection includes scenes at all
ranges of views, from closeup to panoramic, for
both man-made and natural environments, similar
to Oliva and Torralba, 2001).

Fig. 4 shows the first principal components of
the output magnitude of multiscale-oriented filters
for the luminance channel for a spatial resolution
of 2 and 4 cycles/image (this resolution refers to
the resolution at which the magnitude of each filter
output is reduced before applying the PCA. A
resolution of 4 cycles/image corresponds to aver-
aging the output of each filter over N�N ¼ 8� 8
nonoverlapping windows, and 2 cycles/image cor-
responds to N�N ¼ 4� 4). Each principal com-
ponent defines the weights used to compute each
global feature. At each spatial location on the im-
age, the polar plot shows the weighing of the spa-
tial frequency at each orientation, with the lowest
spatial frequencies in the center and the highest
spatial frequencies along the maximum radius. In
the following, we will refer to this visualization of
the principal component weights (shown in Fig. 4)
as a global feature template. In Fig. 4, the first
template responds positively for images with more
texture (seen in the mid- and high-frequency range)
in the bottom half than in the upper half of the
image and responds negatively for images with
more texture in the upper half than in the bottom
(e.g., a landscape with trees in the background, with
weights used to compute the global features. The set of weights

responses of multiscale-oriented filters to a large collection of

onents for a spatial resolution of 2 cycles/image (4� 4 regions).

rientations and scales, and therefore it is not shown. The bottom

For each PC, each subimage shows, in a polar plot (low spatial

orientations are weighted at each spatial location. The white

e refer to the PCs as global feature templates.



Fig. 5. (A) This figure illustrates the information preserved by the global features for two images. (B) The average of the output

magnitude of the multiscale-oriented filters on a polar plot. Each average is computed locally by splitting the image into 4 � 4

nonoverlapping windows. (C) The coefficients (global features) obtained by projecting the averaged output filters into the first 20

principal components. In order to illustrate the amount of information preserved by this representation, (D) shows noise images that

are coerced to have the same color blobs and the same global features (N ¼ 100) than the target image. The very low frequency

components (colored blobs) of the synthetic images are the same as from the original image. The high spatial frequencies are obtained

by adding noise with the constraint that the resulting image should have the same global features as the target image (this only affects

the luminance channel). This constraint is imposed by an iterative algorithm. The algorithm starts from white noise. At each iteration,

the noise is decomposed using the bank of multiscale-oriented filters and the magnitude output of the filters is modified to match the

global features of the target image. From left to right, the spatial resolution (number of windows used to average the filter outputs and

the resolution of the color blobs) increases from 2� 2, 4� 4, 8� 8 and 16� 16. Note that despite the fact that the 2� 2 image provides

a poor reconstruction of the detailed structure of the original image, the texture contained in this representation is still relevant for

scene categorization (e.g., open, closed, indoor, outdoor, natural or urban scenes).
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no view of the sky and snow on the ground). Be-
yond the first component, the global feature tem-
plates increase in complexity and cannot be easily
described. Note that principal components are used
here as an illustration of an orthogonal basis for
generating global features, but they are not the only
possibility. For instance, other bases could be ob-
tained by applying independent component analysis
(Bell and Sejnowski, 1997) or searching for sparse
codes (Olshausen and Field, 1996).

Fig. 5C shows the values of the 20 first global
features (according to the ordering of principal com-
ponents) for coding the structure of the street and
the mountain scene. By varying the spatial resolution
of the global features, we can manipulate the degree
to which local features will be appropriately localized
in the image. In order to illustrate the amount of
information preserved by a set of global features at
various resolution, Fig. 5D shows noise images that
are coerced to have the same color blobs (here the
color information is added by projecting the image
into the principal components of the color channels,
and retaining only the first 32 coefficients) and the
same global features (N ¼ 100) as the street and the
mountain scenes. The global feature scene represen-
tation looks like a sketch version of the scene in
which most of the contours and spatial frequencies
from the original image have been conserved, but
their spatial organization is only loosely preserved: a
sketch at a resolution of 1 cycle/image (pulling local
features from a 2� 2 grid applied on image) is not
informative of the spatial configuration of the image,
but keeps the texture characteristics of the original
scene so that we could probably decide whether the
scene is a natural or man-made environment (Oliva
and Torralba, 2001). For higher resolution, we can
define the layout of the image and identify regions
with different texture qualities, and recognize the
probable semantic category of the scene (Oliva and
Torralba, 2001, 2002).
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Building the gist of the scene from global features:

the Spatial Envelope model

How can we infer the semantic gist of a scene from
the representation generated by the global image
features? The gist refers to the meaningful infor-
mation that an observer can identify from a
glimpse at a scene (Potter, 1975; Oliva, 2005).
The gist description usually includes the semantic
label of the scene (e.g., a kitchen), a few objects
and their surface characteristics (Rensink, 2000),
as well as the spatial layout (e.g., the volume the
scene subtends, its level of clutter, perspective) and
the semantic properties related to the function of
the scene. Therefore, a model of scene gist should
go beyond representing the principal contours or
objects of the image or classifying an image into a
category: it should include a description of seman-
tic information that human observers comprehend
and infer about the scene (Oliva, 2005).

In Oliva and Torralba (2001), we introduced a
holistic approach to scene recognition not only
permitting to categorize the scene in its superordi-
nate (e.g., urban, natural scene) and basic-level cat-
egories (e.g., street, mountain), but also describing
its spatial layout in a meaningful way. There are
many interesting properties of a real-world scene
that can be defined independently of the objects.
For instance, a forest scene can be described in
terms of the degree of roughness and homogeneity
of its textural components. These properties are
in fact meaningful to a human observer who may
use them for comparing similarities between two
forest images (cf. Rao and Lohse, 1993; Heaps and
Handel, 1999 for a similar account in the domain of
textures).

Because a scene is inherently a 3D entity, Oliva
and Torralba (2001) proposed that fast scene recog-
nition mechanisms might initially be based on global
properties diagnostic of the space that the scene
subtends and not necessarily the objects that the
scene contains. A variety of spatial properties like
‘‘openness’’ or ‘‘perspective’’ (e.g., a coast is an
‘‘open’’ environment) have indeed a direct transpo-
sition into global features of two-dimensional (2D)
surfaces (e.g., a coast has a long-horizon line). This
permits to evaluate the degree of openness or mean
depth of an image by measuring the distribution of
local-image features (Torralba and Oliva, 2002,
2003). To determine a vocabulary of spatial layout
properties useful for scene recognition, we asked ob-
servers to describe real-world scene images according
to spatial layout and global appearance characteris-
tics. The vocabulary given by observers (naturalness,
openness, expansion, depth, roughness, complexity,
ruggedness, symmetry) served to establish an initial
scene-centered description of the image (based on
spatial layout properties, Oliva and Torralba, 2002)
offering an alternative to object-centered description
(where a scene is identified from labeling the objects
or regions, Barnard and Forsyth, 2001; Carson et al.,
2002). Similar to the vocabulary used in architecture
to portray the spatial properties of a place, we pro-
posed to term the scene-centered description the
Spatial Envelope of a scene.

Fig. 6 illustrates the framework of the Spatial
Envelope model (details can be found in Oliva and
Torralba, 2001). For simplicity, the Spatial Enve-
lope model is presented here as a combination of
four global scene properties (Fig. 6A). Object
identities are not represented in the model. Within
this framework, the structure of a scene is char-
acterized by the properties of the boundaries of the
space (e.g., the size of the space, its degree of
openness and perspective) and the properties of its
content (e.g., the style of the surface, natural or
man-made, the roughness of these surfaces). Any
scene image can be described by the values it takes
along each spatial envelope property. For in-
stance, to describe the degree of openness of a
given environment, we could refer to a ‘‘pano-
ramic’’, ‘‘open’’, ‘‘closed’’ or ‘‘enclosed’’ scene. A
forest would be described as ‘‘an enclosed envi-
ronment, with a dense isotropic texture’’ and a
street scene would be a ‘‘man-made outdoor scene,
with perspective, and medium level of clutter’’ (Oliva
and Torralba, 2001, 2002). This level of description
is meaningful to observers who can infer the prob-
able semantic category of the scene, by providing a
conceptual summary of the gist of the scene.

Computational modeling demonstrated that
each spatial envelope property (naturalness, open-
ness, expansion, etc.) could be estimated from a
collection of global features templates (Fig. 4)
measuring how natural, open, expanded, rough
the scene image is. The principal structure of a
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scene image is initially represented by a combina-
tion of global features, on the basis of which the
spatial envelope properties can be estimated: each
scene is described as a vector of meaningful values
indicating the image’s degree of naturalness, open-
ness, roughness, expansion, mean depth etc. This
description refers to the spatial envelope represen-
tation of the scene image. Therefore, if spatial en-
velope properties capture the diagnostic structure
of a scene, two images with similar spatial enve-
lopes should also belong to the same scene seman-
tic categories. Indeed, Oliva and Torralba
observed that scenes’ images judged by observers
to have the same categorical membership (street,
highway, forest, coastline, etc.) were projected
close together in a multidimensional space whose
axes correspond to the Spatial Envelope dimen-
sions (Fig. 6C). Neighborhood images in the spa-
tial envelope space corresponded to images with
similar spatial layout and similarconceptual de-
scription (cf. Fig. 7 for exemplars of scenes and
their nearest neighbors in a spatial envelope space
of urban environments). Note that the spatial en-
velope properties (e.g., openness, naturalness, ex-
pansion, symmetry) are implemented here as a
weighted combination of global features, but spa-
tial envelope properties could also be derived
from other basis of low- or intermediate-level fea-
tures (Ullman et al., 2002). By providing semantic
classification at both superordinate (e.g., open, nat-
ural scene) and basic levels (e.g., beach, forest) of
description, the Spatial Envelope model provides a
theoretical and computational framework for the
representation of a meaningful global scene struc-
ture, and a step toward understanding the repre-
sentation and mechanisms of the gist of a scene.
Conclusion

Research over the last decade has made sub-
stantial progress toward understanding the brain



Fig. 7. Examples of urban scenes sharing the same spatial envelope representation (for a resolution of global features of 2c/i). Similar

scenes were retrieved as the nearest neighbors of the first image of each row, in a five-dimensional spatial envelope representation

(naturalness, openness, mean depth, expansion and roughness). On the left, the scenes on each row pertain clearly to the same semantic

category. On the right, the spatial envelope similarities are less representative of basic-level categories per se; however, the global

structure of the image (coarse layout organization and levels of details) is very similar. There are other important global scene

properties that are not shown here (For instance, visual complexity is not represented here (Oliva et al., 2004), and color is also not

taken into account.

33
mechanisms underlying human object recognition
(Kanwisher, 2003; Grill-Spector and Malach,
2004) and its modeling (Riesenhuber and Poggio,
1999; Ullman et al., 2002; Torralba et al., 2004;
Serre et al., 2005). Converging evidence from be-
havioral, imaging and computational studies sug-
gest that, at least in early stages of processing,
mechanisms involved in natural scene recognition
may be independent from those involved in rec-
ognizing objects (Schyns and Oliva, 1994; Oliva
and Torralba, 2001; Li et al., 2002; Fei Fei and
Perona, 2004; Marois et al., 2004; McCotter et al.,
2005). On the basis of a review of behavioral and
computational work, we argue that fast scene rec-
ognition does not need to be built on top of the
processing of objects, but can be analyzed in par-
allel by scene-centered mechanisms. In our frame-
work, a scene image is initially processed as a
single entity and local information about objects
and parts comes into play at a later stage of visual
processing. We propose a formal basis of global
features permitting to estimate quickly and in a
feed-forward manner a meaningful representation
of the scene structure. Global image feature values
provide a summary of the layout of real-world
images that may precede and constrain the anal-
ysis of features of higher complexity. On the basis
of a global spatial representation of the image, the
Spatial Envelope model (Oliva and Torralba,
2001) provides a conceptual framework for the
representation and the mechanisms of fast scene
gist interpretation. Global image features and
the spatial envelope representation are not meant
to be an alternative to local image analysis but
serve as a parallel pathway that can, on the one
hand, quickly constrain local analysis, narrowing
down the search for object in cluttered, real-world
scenes (global contextual priming, Torralba 2003a)
and, on the other hand, provide a formal instance
of a feed-forward mechanism for scene context
evaluation, for the guidance of attention and
eye movements in the scene (Oliva et al., 2003;
Torralba, 2003a,b; Torralba et al., 2006).

Evidence in favor of distinct neural mechan-
isms supporting scene and object recognition, at
least at an earlier stage of visual processing, comes
from the pioneer work of Epstein and Kanwisher
(1998). They found a region of cortex referred to
as the parahippocampal place area (PPA) that re-
sponds more strongly to pictures of intact scenes
(indoors, outdoors, closeup views), than to objects
alone (Epstein et al., 2000). Furthermore, the PPA
seems to be sensitive to holistic properties of the
scene layout, but not to its complexity in terms of
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quantity of objects (Epstein and Kanwisher,
1998). The neural independence between scenes-
and object-recognition mechanisms was recently
strengthened by Goh et al., (2004). They observed
activation of different parahippocampal regions
when pictures of scenes were processed alone com-
pared to pictures containing a prominent object,
consistent within that scene. In a related vein, Bar
(Bar and Aminoff, 2003; Bar, 2004) found specific
cortical regions (a network relating regions in the
parahippocampal region and the retrosplenial cor-
tex) involved in the analysis of the context of ob-
jects. The neural underpinnings of the global
features, the spatial envelope properties or the gist
of a scene remain open issues: the global features
are originally built as combinations of local low-
level filters of the type found in early visual areas.
Lateral and/or feedback connections could com-
bine this information locally to be read out by
higher visual areas. Receptive fields in the inferior
temporal cortex and parahippocampal region
cover most of the useful visual field (20–401) and
thus are also capable, in theory, of encoding scene
layout information like the global features and the
spatial envelope properties. Clearly, the mecha-
nisms by which scene understanding occurs in the
brain remain to be found.
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