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Places: A 10 Million Image Database
for Scene Recognition
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Abstract—The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human
semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a
repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of
environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene
classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs
trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage
and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on

scene recognition problems.

Index Terms—Scene classification, visual recognition, deep learning, deep feature, image dataset

1 INTRODUCTION

F a current state-of-the-art visual recognition system

would send you a text to describe what it sees, the text
might read something like: “There is a sofa facing a TV set.
A person is sitting on the sofa holding a remote control.
The TV is on and a talk show is playing”. Reading this, you
would likely imagine a living-room. However, that scenery
can very well happen in a resort by the beach.

For an agent acting into the world, there is no doubt that
object and event recognition should be a primary goal of its
visual system. But knowing the place or context in which
the objects appear is as equally important for an intelligent
system to understand what might have happened in the
past and what may happen in the future. For instance, a
table inside a kitchen can be used to eat or prepare a meal,
while a table inside a classroom is intended to support a
notebook or a laptop to take notes.

A key aspect of scene recognition is to identify the place
in which the objects seat (e.g., beach, forest, corridor, office,
street, ...). Although one can avoid using the place category
by providing a more exhaustive list of the objects in the pic-
ture and a description of their spatial relationships, a place
category provides the appropriate level of abstraction to
avoid such a long and complex description. Note that one
could avoid using object categories in a description by only
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listing parts (i.e., two eyes on top of a mouth for a face).
Like objects, places have functions and attributes. They are
composed of parts and some of those parts can be named
and correspond to objects, just like objects are composed of
parts, some of which are nameable as well (e.g., legs, eyes).

Whereas most datasets have focused on object categories
(providing labels, bounding boxes or segmentations), here
we describe the Places database, a quasi-exhaustive reposi-
tory of 10 million scene photographs, labeled with 434 scene
semantic categories, comprising about 98 percent of the
type of places a human can encounter in the world. Image
samples are shown in Fig. 1 while Fig. 2 shows the number
of images per category, sorted in decreasing order.

Departing from Zhou et al. [1], we describe in depth the
construction of the Places Database, and evaluate the perfor-
mance of several state-of-the-art Convolutional Neural Net-
works (CNNs) for place recognition. We compare how the
features learned in a CNN for scene classification behave
when used as generic features in other visual recognition
tasks. Finally, we visualize the internal representations of
the CNNs and discuss one major consequence of training a
deep learning model to perform scene recognition: object
detectors emerge as an intermediate representation of the
network [2]. Therefore, while the Places database does not
contain any object labels or segmentations, it can be used to
train new object classifiers.

1.1 The Rise of Multi-Million Datasets

What does it take to reach human-level performance with a
machine-learning algorithm? In the case of supervised
learning, the problem is two-fold. First, the algorithm must
be suitable for the task, such as Convolutional Neural Net-
works in the large scale visual recognition [1], [3] and
Recursive Neural Networks for natural language processing
[4], [5]. Second, it must have access to a training dataset
of appropriate coverage (quasi-exhaustive representation of

0162-8828 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-4030-0684
https://orcid.org/0000-0003-4030-0684
https://orcid.org/0000-0003-4030-0684
https://orcid.org/0000-0003-4030-0684
https://orcid.org/0000-0003-4030-0684
mailto:
mailto:
mailto:
mailto:

ZHOU ET AL.: PLACES: A 10 MILLION IMAGE DATABASE FOR SCENE RECOGNITION

elevator door

|

cafeteria

veterinarians office

Indoor

fishpond

field road

ralnforest

Nature

1453

train station platform

windmill
—

__corral

Urban

Fig. 1. Image samples from various categories of the Places Database (two samples per category). The dataset contains three macro-classes:

Indoor, Nature, and Urban.

classes and variety of exemplars) and density (enough
samples to cover the diversity of each class). The optimal
space for these datasets is often task-dependent, but the
rise of multi-million-item sets has enabled unprecedented
performance in many domains of artificial intelligence.

The successes of Deep Blue in chess, Watson in
“Jeopardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6], [7],
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on 1.2
million object [10], [11], [12] and 2.5 million scene images [1].
Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-Centric Datasets

The first benchmark for scene recognition was the Scenel5
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with a

few hundred images per class, and current classifiers are sat-
urated, reaching near human performance with 95 percent.
The MIT Indoor67 database [15] with 67 indoor categories
and the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage of
place categories, but failed short in term of quantity of data
needed to feed deep learning algorithms. To complement
large object-centric datasets such as ImageNet [11], we build
the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the ear-
liest image dataset with diverse object annotations in scene
context. The Pascal VOC challenge has greatly advanced
the development of models for object detection and segmen-
tation tasks. Nowadays, COCO dataset [18] focuses on col-
lecting object instances both in polygon and bounding box
annotations for images depicting everyday scenes of com-
mon objects. The recent Visual Genome dataset [19] aims at
collecting dense annotations of objects, attributes, and their
relationships. ADE20K [20] collects precise dense annota-
tion of scenes, objects, parts of objects with a large and open
vocabulary. Altogether, annotated datasets further enable
artificial systems to learn visual knowledge linking parts,
objects and scene context.

Fig. 2. Sorted distribution of image number per category in the Places Database. Places contains 10,624,928 images from 434 categories. Category

names are shown for every six intervals.
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Fig. 3. Image samples from four scene categories grouped by queries to illustrate the diversity of the dataset. For each query we show nine anno-

tated images.

2 PLACES DATABASE

2.1 Coverage of the Categorical Space

The first asset of a high-quality dataset is an expansive cov-
erage of the categorical space to be learned. The strategy of
Places is to provide an exhaustive list of the categories
of environments encountered in the world, bounded by
spaces where a human body would fit (e.g., closet, shower).
The Scene UNderstanding dataset [16] provided that initial
list of semantic categories. The SUN dataset was built
around a quasi-exhaustive list of scene categories with
different functionalities, namely categories with unique
identities in discourse. Through the use of WordNet [21],
the SUN database team selected 70,000 words and concrete
terms that described scenes, places and environments that
can be used to complete the phrase “I am in a place”, or “let’s
go to the/a place”. Most of the words referred to basic and
entry-level names ([22]), resulting in a corpus of 900 differ-
ent scene categories after bundling together synonyms, and
separating classes described by the same word but referring
to different environments (e.g., inside and outside views of
churches). Details about the building of that initial corpus
can be found in [16]. Places Database has inherited the same
list of scene categories from the SUN dataset, with a few
changes that are described in Section 2.2.4.

2.2 Construction of the Database

The construction of the Places Database is composed of four
steps, from querying and downloading images, labeling
images with ground truth category, to scaling up the dataset
using a classifier, and further improving the separation of
similar classes. The detail of each step is introduced in the
following sections.

The data collection process of the Place Database is
similar to the image collection in other common datasets,
like ImageNet and COCO. The definition of categories for
the ImageNet dataset [11] is based on the synset of WordNet
[21]. Candidate images are queried from several Image
search engines using the set of WordNet synonyms. Images
are cleaned up through AMT in the format of the binary
task similar to the ours. Quality control is done by multiple
users annotating the same image. There are about 500-1200
ground-truth images per synset. On the other hand, COCO

dataset [18] focuses on annotating the object instances inside
the images with more scene context. The candidate images
are mainly collected from Flickr, in order to include less
iconic images commonly returned by image search engines.
The image annotation process of COCO is split into cate-
gory labeling, instance spotting, and instance segmentation,
with all the tasks done by AMT workers. COCO has 80
object categories with more than 2 million object instances.

2.2.1 Step 1: Downloading Images Using Scene

Category and Attributes

From online image search engines (Google Images, Bing
Images, and Flickr), candidate images were downloaded
using a query word from the list of scene classes provided
by the SUN database [16]. In order to increase the diversity
of visual appearances in the Places dataset, each scene class
query was combined with 696 common English adjectives'
(e.g., messy, spare, sunny, desolate, etc.). In Fig. 3) we show
some examples of images in Places grouped by queries.
About 60 million images (color images of at least 200 x 200
pixels size) with unique URLs were identified. Importantly,
the Places and SUN datasets are complementary: PCA-
based duplicate removal was conducted within each scene
category in both databases, so that they do not contain the
same images.

2.2.2 Step 2: Labeling Images with Ground Truth
Category

Image ground truth label verification was done by crowd-
sourcing the task to Amazon Mechanical Turk (AMT). Fig. 4
illustrates the experimental paradigm used. First, AMT
workers were given instructions relating to a particular cate-
gory at a time (e.g., cliff), with a definition, sample images
belonging to the category (true images), and sample images
not belonging to the category (false images). As an example,
Fig. 4a shows the instructions for the category cliff. Workers
then performed a verification task for the corresponding
category. Fig. 4b shows the AMT interface for the verification

1. The list of adjectives used in querying can be found in https://
github.com/CSAILVision/places365/blob/master/adjectives_
download.csv.
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Fig. 4. Annotation interface in the Amazon Mechanical Turk for selecting
the correct exemplars of the scene from the downloaded images. a)
instruction given to the workers in which we define positive and negative
examples. b) binary selection interface.

task. The experimental interface displayed a central image,
flanked by smaller version of images the worker had just
responded (on the left), and the images the worker will
respond to next (on the right). Information gleaned from the
construction of the SUN dataset suggests that in the first iter-
ation of labeling more than 50 percent of the the downloaded
images are not true exemplars of the category. For this reason
the default answer in the interface the default answer was
set to NO (notice that all the smaller versions of the images in
the left are marked with a bold red contour, which denotes
that the image do not belong to the category). Thus, if the
worker just presses the space bar to move, images will keep
the default NO label. Whenever a true exemplar appears in
the center, the worker can press a specific key to mark it as a
positive exemplar (responding YES). As the response is set
to YES the bold contour of the image turns to green. The
interface also allows moving backwards to revise previous
annotations. Each AMT HIT (Human Intelligence Task, one
assignment for one worker), consisted of 750 images for man-
ual annotation. A control set of 30 positive samples and 30
negative samples with ground-truth category labels from the
SUN database were intermixed in the HIT as well. As a qual-
ity control measure, only worker HITs with an accuracy of 90
percent or higher on these control images were kept.

The positive images resulting from the first cleaning
iteration were sent for a second iteration of cleaning. We
used the same task interface but with the default answer
was set to YES. In this second iteration, 25.4 percent of
the images were relabeled as NO. We tested a third
cleaning iteration on a few exemplars but did not pursue
it further as the percentage of images relabeled as NO
was not significant.

After the two iterations of annotation, we collected one
scene label for 7,076,580 images pertaining to 476 scene cate-
gories. As expected, the number of images per scene cate-
gory vary greatly (i.e., there are many more images of
bedroom than cave on the web). There were 413 scene cate-
gories that ended up with at least 1,000 exemplars, and 98
scene categories with more than 20,000 exemplars.

2.2.3 Step 3: Scaling Up the Dataset Using a Classifier

As a result of the previous round of image annotation, there
were 53 million remaining downloaded images not
assigned to any of the 476 scene categories (e.g., a bedroom
picture could have been downloaded when querying
images for living-room category, but marked as negative by
the AMT worker). Therefore, a third annotation task was
designed to re-classify then re-annotate those images, using
a semi-automatic bootstrapping approach.
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Field

Fig. 5. Boundaries between place categories can be blurry, as some
images can be made of a mixture of different components. The images
shown in this figure show a soft transition between a field and a forest.
Although the extreme images can be easily classified as field and forest
scenes, the middle images can be ambiguous.

A deep learning-based scene classifier, AlexNet [3], was
trained to classify the remaining 53 million images: We first
randomly selected 1,000 images per scene category as train-
ing set and 50 images as validation set (for the 413 catego-
ries which had more than 1,000 samples). AlexNet achieved
32 percent scene classification accuracy on the validation set
after training. The trained AlexNet was then used to classify
the 53 million images. We used the predicted class score by
the AlexNet to rank the images within one scene category
as follow: for a given category with too few exemplars, the
top ranked images with predicted class confidence higher
than 0.8 were sent to AMT for a third round of manual
annotation using the same interface shown in Fig .4. The
default answer was set to NO.

After completing this third round of AMT annotation, the
distribution of the number of images per category flattened
out: 401 scene categories had more than 5,000 images per cat-
egory and 240 scene categories had more than 20,000 images.
In total, about 3 million images were added into the dataset.

2.2.4 Step 4: Improving the Separation of Similar
Classes

Despite the initial effort to bundle synonyms from Word-
Net, the scene list from the SUN database still contained a
few categories with very close synonyms (e.g., ‘ski lodge’
and ‘ski resort’, or ‘garbage dump’ and ‘landfill’). We manu-
ally identified 46 synonym pairs like these and merged their
images into a single category.

Additionally, we observed that some scene categories
could be easily confused with blurry categorical boundaries,
as illustrated in Fig. 5. This means that, for images in these
blurry boundaries, answering the question “Does image
I belong to class A?” might be difficult. However, it can be
easier to answer the question “Does image I belong to class A
or B?”. With this question, the decision boundary becomes
clearer for a human observer and it also gets closer to the
final task that a computer system will be trained to solve,
which is actually separating classes even when the bound-
aries are blurry.

After checking the annotations, we confirmed that in the
previous three steps of the AMT annotation, workers were
confused with some pairs (or groups) of scene categories.
For instance, there was an overlap between ‘canyon’ and
‘mountain’ or ‘butte’ and ‘mountain’. There were also images
mixed in the following category pairs: ‘jacuzzi’ and
‘swimming pool indoor’; ‘pond’” and ‘lake’; ‘volcano’ and
‘mountain’; ‘runway’ and ‘highway and road’; ‘operating
room’ and ‘hospital room’; among others. In the whole set of
categories, we identified 53 different ambiguous pairs.
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Fig. 6. Annotation interface in Amazon Mechanical Turk for differentiat-
ing images from two similar categories. a) instruction in which we give
several typical examples in each category. b) the binary selection inter-
face, in which the worker has to classify the shown image into one of the
classes or none of them.

To further differentiate the images from the categories
with shared content, we designed a new interface for a
fourth annotation step. The instructions for the task are
shown Fig. 6a, while Fig. 6b shows the annotation interface.
The interface combines exemplar images from the two
categories with shared content (such as ‘art school” and ‘art
studio’), and AMT workers were asked to classify images
into one of the categories or neither of them.

After this fourth annotation step, the Places database
was finalized with over 10 millions labeled exemplars
(10,624,928 images) from 434 place categories.

3 PLACES BENCHMARKS

Here we describe four subsets of Places database as bench-
marks. Places205 and Places88 are from [1]. Two new
benchmarks have been added: from the 434 categories,
we selected 365 categories with more than 4,000 images
each to create Places365-Standard and Places365-Challenge.
The details of each benchmark are the following:

o  Places365-Standard has 1,803,460 training images
with the image number per class varying from 3,068
to 5,000. The validation set has 50 images per class
and the test set has 900 images per class. Note that
the experiments in this paper are reported on
Places365-Standard.

o  Places365-Challenge contains the same categories as
Places365-Standard, but the training set is significantly
larger with a total of 8 million training images.
The validation set and testing set are the same as
the Places365-Standard. This subset was released for
the Places Challenge 2016 held in conjunction with
the European Conference on Computer Vision
(ECCV) 2016, as part of the ILSVRC Challenge.

e  Places205. Places205, described in [1], has 2.5 million
images from 205 scene categories. The image number
per class varies from 5,000 to 15,000. The training
set has 2,448,873 total images, with 100 images per
category for the validation set and 200 images per
category for the test set.

o Places88. Places88 contains the 88 common scene
categories among the ImageNet [12], SUN [16]
and Places205 databases. Places88 contains only the
images obtained in round 2 of annotations, from the
first version of Places used in [1]. We call the other
two corresponding subsets ImageNet88 and SUNS88

2. http://places2.csail.mit.edu/challenge.html
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respectively. These subsets are used to compare per-
formances across different scene-centric databases,
as the three datasets contain different exemplars per
category (i.e., none of these three datasets contain
common images). Note that finding correspondences
between the classes defined in ImageNet and Places
brings some challenges. ImageNet follows the Word-
Net definitions, but some WordNet definitions are
not always appropriate for describing places. For
instance, the class ‘elevator’ in ImageNet refers to an
object. In Places, ‘elevator’ takes different meanings
depending on the location of the observer: elevator
door, elevator interior, or elevator lobby. Many cate-
gories in ImageNet do not differentiate between
indoor and outdoor (e.g., ice-skating rink) while in
Places, indoor and outdoor versions are separated as
they do not necessarily afford the same function.

4 COMPARING SCENE-CENTRIC DATASETS

Scene-centric datasets correspond to images labeled with a
scene, or place name, as opposed to object-centric datasets,
where images are labeled with object names. In this section
we use the Places88 benchmark to compare Places dataset
with the tow other biggest scene datasets: ImageNet88 and
SUNSS. Fig. 7 illustrates the differences among the number
of images found in the different categories for Places88,
ImageNet88 and SUNS8S8. Notice that Places Database is the
largest scene-centric image dataset so far. The next section
presents a comparison of these three datasets in terms of
image diversity.

4.1 Dataset Diversity

Given the types of images found on the internet, some cate-
gories will be more biased than others in terms of view-
points, types of objects, or even image style [23]. However,
bias can be compensated with a high diversity of images,
with many appearances represented in the dataset. In this
section we describe a measure of dataset diversity to com-
pare how diverse images from three scene-centric datasets
(Places88, SUN88 and ImageNet88) are.

Comparing datasets is an open problem. Even datasets
covering the same visual classes have notable differences
providing different generalization performances when used
to train a classifier [23]. Beyond the number of images and
categories, there are aspects that are important but difficult
to quantify, like the variability in camera poses, in decora-
tion styles or in the type of objects that appear in the scene.

Although the quality of a database is often task depen-
dent, it is reasonable to assume that a good database should
be dense (with a high degree of data concentration), and
diverse (it should include a high variability of appearances
and viewpoints). Imagine, for instance, a dataset composed
of 100,000 images all taken within the same bedroom. This
dataset would have a very high density but a very low
diversity as all the images will look very similar. An ideal
dataset, expected to generalize well, should have high diver-
sity as well. While one can achieve high density by collect-
ing a large number of images, diversity is not an obvious
quantity to estimate in image sets, as it assumes some
notion of similarity between images. One way to estimate
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Fig. 7. Comparison of the number of images per scene category for the common 88 scene categories in Places, ImageNet, and SUN datasets.

similarity is to ask the question are these two images similar?
However, similarity in the wild is a subjective and loose
concept, as two images can be viewed as similar if they
contain similar objects, and/or have similar spatial configu-
rations, and/or have similar decoration styles and so on.
A way to circumvent this problem is to define relative meas-
ures of similarity for comparing datasets.

Several measures of diversity have been proposed, par-
ticularly in biology for characterizing the richness of an eco-
system (see [24] for a review). Here, we propose to use a
measure inspired by the Simpson index of diversity [25]. The
Simpson index measures the probability that two random
individuals from an ecosystem belong to the same species.
It is a measure of how well distributed the individuals
across different species are in an ecosystem, and it is related
to the entropy of the distribution. Extending this measure
for evaluating the diversity of images within a category is
non-trivial if there are no annotations of sub-categories.
For this reason, we propose to measure the relative diversity
of image datasets A and B based on the following idea: if set
A is more diverse than set B, then two random images from
set B are more likely to be visually similar than two random
samples from A. Then, the diversity of A with respect to B
can be defined as

DiVB(A) =1 —p(d(al,ag) < d(bl,bg)), (@)
where a1,a2 € A and b, by € B are randomly selected. With
this definition of relative diversity we have that A is more
diverse than B if, and only if, Divg(A) > Div4(B).

For an arbitrary number of datasets, Aj,..., Ay, the
diversity of A; with respect to A,, ..., Ay can be defined as

Divy,, . ay (A1) =1 —p(d(an, a12) < 115121% d(ain,ai2)), (2)
where a1, a;2 € A; are randomly selected, i =2 : N.

We measured the relative diversities between SUNSS,
ImageNet88 and Places88 using AMT. Workers were pre-
sented with different pairs of images and they had to select
the pair that contained the most similar images. The pairs
were randomly sampled from each database. Each trial was
composed of 4 pairs from each database, giving a total of
12 pairs to choose from. We used 4 pairs per database to

increase the chances of finding a similar pair and avoiding
users having to skip trials. AMT workers had to select the
most similar pair on each trial. We ran 40 trials per category
and two observers per trial, for the 88 categories in common
between ImageNet88, SUN88 and Places88 databases.
Figs. 8a and 8b shows some examples of pairs from the
diversity experiments for the scene categories playground
(a) and bedroom (b). In the figure only one pair from each
database is shown. We observed that different annotators

” e Places88
2 35 T e ImageNet88
30 - == SUNs8
Sost
220l
[
Qo
€ 15
S
Z ol
5L
0] i
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
C) Diversity

Fig. 8. Examples of pairs for the diversity experiment for a) playground
and b) bedroom. Which pair shows the most similar images? The bottom
pairs were chosen in these examples. c¢) Histogram of relative diversity
per each category (88 categories) and dataset. Places88 (in blue line)
contains the most diverse set of images, then ImageNet88 (in red line)
and the lowest diversity is in the SUN88 database (in yellow line) as
most images are prototypical of their class.
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TABLE 1
Classification Accuracy on the Test Set of Places205 and the Test Set of SUN205
Test set of Places205 Test set of SUN205
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.
ImageNet-AlexNet feature+SVM 40.80% 70.20% 49.60% 80.10%
Places205-AlexNet 50.04% 81.10% 67.52% 92.61%
Places205-GoogLeNet 55.50% 85.66% 71.6% 95.01%
Places205-VGG 58.90% 87.70% 74.6% 95.92%
SamExynosx 64.10% 90.65% - -
SIAT MMLAB 62.34% 89.66% - -

We use the class score averaged over 10-crops of each test image to classify the image. = shows the top 2 ranked results from the

Places205 leaderboard.

were consistent in deciding whether a pair of images was
more similar than another pair of images.

Fig. 8c shows the histograms of relative diversity for all
the 88 scene categories common to the three databases.
If the three datasets were identical in terms of diversity,
the average diversity should be 2/3 for the three datasets.
Note that this measure of diversity is a relative measure
between the three datasets. In the experiment, users
selected pairs from the SUN database to be the closest to
each other 50 percent of the time, while the pairs from the
Places database were judged to be the most similar only on
17 percent of the trials. ImageNet88 pairs were selected 33
percent of the time.

The results show that there is a large variation in terms of
diversity among the three datasets, showing Places to be the
most diverse of the three datasets. The average relative
diversity on each dataset is 0.83 for Places, 0.67 for Image-
Net88 and 0.50 for SUN. The categories with the largest var-
iation in diversity across the three datasets were playground,
veranda and waiting room.

4.2 Cross Dataset Generalization

As discussed in [23], training and testing across different
datasets generally results in a drop of performance due
to the dataset bias problem. In this case, the bias between
datasets is due, among other factors, to the differences in
the diversity between the three datasets. Fig. 9 shows the
classification results obtained from the training and testing
on different permutations of the 3 datasets. For these results
we use the features extracted from a pre-trained ImageNet-
CNN and a linear SVM. In all three cases training and test-
ing on the same dataset provides the best performance for a
fixed number of training examples. As the Places database
is very large, it achieves the best performance on two of the
test sets when all the training data is used.

Test on Places 88

Test on SUN 88

Test on ImageNet Scene 88

Classification accuracy

Classification accuracy

| Train on Places 83 (60.3] —— Train on ImageNet 88 [446]
| Train on SUN 88 (492 —— Train on SUN 88 (37.0]

rain on ImageNet 88 (65.6] I —— Train on Places 88 (54.2]

Number of training samples per category b)  Number of training samples per category ) Numberof training samples per category

a)

Fig. 9. Cross dataset generalization of training on the 88 common
scenes between Places, SUN and ImageNet then testing on the 88 com-
mon scenes from: a) SUN, b) ImageNet and c) Places database.

5 CONVOLUTIONAL NEURAL NETWORKS FOR
SCENE CLASSIFICATION

Given the impressive performance of the deep Convolu-
tional Neural Networks (CNNs), particularly on the Image-
Net benchmark [3], [12], we choose three popular CNN
architectures, AlexNet [3], GoogLeNet [26], and VGG 16 con-
volutional-layer CNN [27], then train them on Places205 and
Places365-Standard respectively to create baseline CNN
models. The trained CNNs are named as PlacesSubset-CNN,
i.e., Places205-AlexNet or Places365-VGG.

All the Places-CNNs presented here were trained using
the Caffe package [28] on Nvidia GPUs Tesla K40 and
Titan X.> Additionally, given the recent breakthrough perfor-
mances of the Residual Network (ResNet) on ImageNet clas-
sification [29], we further fine-tuned ResNet152 on the
Places365-Standard (termed as Places365-ResNet) and com-
pared it with the other trained-from-scratch Places-CNNs
for scene classification.

5.1 Results on Places205 and Places365

After training the various Places-CNNs, we used the final
output layer of each network to classify the test set images
of Places205 and SUN205 (see [1]). The classification results
for Top-1 accuracy and Top-5 accuracy are listed in Table 1.
The Top-1 accuracy is the percentage of the testing images
where the top predicted label exactly match the ground-
truth label. The Top-5 accuracy is that the percentage of test-
ing images where the ground-truth label is among the top
ranked 5 predicted labels given by an algorithm. Since there
are some ambiguity between some scene categories, the
Top-5 accuracy is a more suitable criteria of measuring
scene classification performance.

As a baseline comparison, we show the results of a linear
SVM trained on ImageNet-CNN features of 5000 images
per category in Places205 and 50 images per category
in SUN205 respectively. We observe that Places-CNNs per-
form much better than the ImageNet feature+SVM baseline
while, as expected, Places205-GoogLeNet and Places205-
VGG outperformed Places205-AlexNet with a large margin,
due to their deeper structures. To date (Oct 2, 2016) the top
ranked results on the test set of Places205 leaderboard* is
64.10 percent on Top-1 accuracy and 90.65 percent on Top-5

3. All the Places-CNNs are available at https://github.com/
CSAILvision/places365.
4. http:/ /places.csail. mit.edu/user/leaderboard.php
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GT: cafeteria

top-1: cafeteria (0.179)

top-2: restaurant (0.167)
top-3: dining hall (0.091)
top-4: coffee shop (0.086)

= top-5: restaurant patio (0.080)

L4, . GT: natural canal

top-1: swamp (0.529)
top-2: marsh (0.232)
top-3: natural canal (0.063)
top-4: lagoon (0.047)
top-5: rainforest (0.029)

GT: chalet

top-1: ski resort (0.141)
top-2: ice floe (0.129)
top-3: igloo (0.114)

top-5: courtyard (0.083)

top-4: balcony exterior (0.103)

GT: classroom

top-1: locker room (0.585)
top-2: lecture room (0.135)
top-3: conference center (0.061)
top-4: classroom (0.033)

top-5: elevator door (0.025)

FR] G T: creek

i top-1: forest broadleaf (0.307)
top-2: forest path (0.208)
top-3: creek (0.086)
top-4: rainforest (0.076)
top-5: cemetery (0.049)

4 GT: crosswalk

top-1: crosswalk (0.720)

top-2: plaza (0.060)

top-3: street (0.055)

i top-4: shopping mall indoor (0.039)
top-5: bazaar outdoor (0.021)
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GT: drugstore
top-1: supermarket (0.286)
l== top-2: hardware store (0.248)
F top-3: drugstore (0.120)
s t0p-4: department store (0.087)
me top-5: pharmacy (0.052)

GT: greenhouse indoor

| top-1: greenhouse indoor (0.479)
top-2: greenhouse outdoor (0.055)
top-3: botanical garden (0.044)

Sk top-4: assembly line (0.025)

¥ top-5: vegetable garden (0.022)

GT: market outdoor

top-1: promenade (0.569)

top-2: bazaar outdoor (0.137)
top-3: boardwalk (0.118)

top-4: market outdoor (0.074)
top-5: flea market indoor (0.029)

Fig. 10. The predictions given by the Places365-VGG for the images from the validation set. The ground-truth label (GT) and the top 5 predictions
are shown. The number beside each label indicates the prediction confidence.

TABLE 2
Classification Accuracy on the Validation Set and Test Set of Places365
Validation Set of Places365 Test Set of Places365
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.
Places365-AlexNet 53.17% 82.89% 53.31% 82.75%
Places365-GoogLeNet 53.63% 83.88% 53.59% 84.01%
Places365-VGG 55.24% 84.91% 55.19% 85.01%
Places365-ResNet 54.74% 85.08% 54.65% 85.07%

We use the class score averaged over 10-crops of each testing image to classify the image.

accuracy. Note that for the test set of SUN205, we did not
fine-tune the Places-CNNs on the training set of SUN205, as
we directly evaluated them on the test set of SUN.

We further evaluated the baseline Places365-CNNs on
the validation set and test set of Places365. The results
are shown in Table 2. We can see that Places365-VGG and
Places365-ResNet have similar top performances compared
with the other two CNNs.” Even though Places365 has
160 more categories than Places205, the Top-5 accuracy
of the Places205-CNNs (trained on the previous version of
Places [1]) on the test set only drops by 2.5 percent.

To evaluate how extra categories bring improvements,
we compute the accuracy for the 182 common categories
between Places205 and Places365 (we merge some catego-
ries in Places205 when building Places365 thus there are
less common categories) for Places205-CNN and Places365-
CNN. On the validation set of Places365, we select the
images of the 182 common categories, then use the aligned
182 outputs of the Places205-AlexNet and Places365-
AlexNet to predict the labels respectively. The Topl accu-
racy for Places205-AlexNet is 0.572, the one for Places365-
AlexNet is 0.577. Thus Places365-AlexNet not only predicts
more categories, but also has better accuracy on the previ-
ous existing categories.

Fig. 10 shows the responses to examples correctly pre-
dicted by the Places365-VGG. Notice that most of the Top-5
responses are very relevant to the scene description. Some
failure or ambiguous cases are shown in Fig. 11. Broadly,

5. The performance of the ResNet might result from fine-tuning or
under-training, as the ResNet is not trained from scratch.

we can identify two kinds of mis-classification given the
current label attribution of Places: 1) less-typical activities
happening in a scene, such as taking group photo in a

GT: construction site

top-1: martial arts gym (0.157)
top-2: stable (0.156)

top-3: boxing ring (0.091)
top-4: locker room (0.090)
top-5: basketball court (0.056)

GT: aquarium

top-1: restaurant (0.213)
top-2: ice cream parlor (0.139)
top-3: coffee shop (0.138)
top-4: pizzeria (0.085)

top-5: cafeteria (0.078)

GT: junkyard

top-1: campsite (0.306)

top-2: sandbox (0.276)

top-3: beer garden (0.052)
top-4: market outdoor (0.035)
top-5: flea market indoor (0.033)

GT: lagoon

top-1: balcony interior (0.136)
top-2: beach house (0.134)
top-3: boardwalk (0.123)
top-4: roof garden (0.103)
top-5: restaurant patio (0.068)

Fig. 11. Examples of predictions rated as incorrect in the validation set
by the Places365-VGG. GT states for ground truth label. Note that some
of the top-5 responses are often not wrong per se, predicting semantic
categories near by the GT category. See the text for details.



*3000 ATAT ¥ 11:25PM G0 mme eeeso ATAT ¥ 00 PM -
places.csail mit edu places.csall.mit edu
§ I U G B U A M TG I
Demo uploaded follow Creative Commons licenses,
. . o Take/Choose a photo
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Fig. 12. Two screenshots of the scene recognition demo based on the Pla-
ces-CNN. The web-demo predicts the type of environment, the semantic
categories, and associated scene attributes for uploaded photos.

construction site and camping in a junkyard; 2) images com-
posed of multiple scene parts, which make one ground-
truth scene label not sufficient to describe the whole
environment. These results suggest the need to have multi-
ground truth labels for describing environments.

It is important to emphasize that for many scene cate-
gories the Top-1 accuracy might be an ill-defined measure:
environments are inherently multi-labels in terms of their
semantic description. Different observers will use different
terms to refer to the same place, or different parts of the same
environment, and all the labels might fit well the description
of the scene, as we observe in the examples of Fig. 11.

5.2 Web-Demo for Scene Recognition

Based on our trained Places-CNN, we created a web-demo
for scene recognition,® accessible through a computer
browser or mobile phone. People can upload photos to the
web-demo to predict the type of environment, with the
5 most likely semantic categories, and relevant scene attrib-
utes. Two screenshots of the prediction result on the mobile
phone are shown in Fig. 12. Note that people can submit
feedback about the result. The top-5 recognition accuracy of
our recognition web-demo in the wild is about 72 percent
(from the 9,925 anonymous feedbacks dated from Oct.19,
2014 to May 5, 2016), which is impressive given that people
uploaded all kinds of photos from real-life and not necessar-
ily places-like photos. Places205-AlexNet is the back-end
prediction model in the demo.

5.3 Places365 Challenge Result

The subset Places365-Challenge, which contains more than
8 million images from 365 scene categories, was used in
the Places Challenge 2016 held as part of the ILSVRC

6. http://places.csail. mit.edu/demo.html
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Top-5 errors of all the 92 submission (sorted)
20.00%
18.00%

16.00%

Baseline ResNet152: 14.9%

14.00%
12.00%

10.00%

8.00% Hikvision: 9.01%

6.00%
0 10 20 30 40 50 60 70 80 90 100

Fig. 13. The ranked results of all the 92 valid submissions. The best
baseline trained on Places365-standard is the Resnet152 which has the
top5-error as 14.9 percent, while the winner network from HikVision gets
9.01 percent top5-error which outperform the baseline with large margin.

Challenge in the European Conference on Computer
Vision (ECCV) 2016.

The rule of the challenge is that each team can only use
the provided data in the Places365-Challenge to train their
networks. Standard CNN models trained on Imagenet-
1.2 million and previous Places are allowed to use. Each
team can submit at most 5 prediction results. Ranks are
based on the top-5 classification error of each submission.
Winners teams are then invited to give talks at the ILSVRC-
COCO Joint Workshop at ECCV’16.

There were totally 92 valid submissions from 27 teams.
Finally team Hikvision [30] won the 1st place with 9.01 percent
top-5 error, team MW [31] won the 2nd place with
10.19 percent top-5 error, and team Trimps-Soushen [32] won
the 3rd place with 10.30 percent top-5 error. The leaderboard
and the team information are available at the challenge result
page.” The ranked results of all the submissions are plotted
in Fig. 13. The entry from the winner team outperforms
our best baseline with a large margin (~ 6 percent in top-5
accuracy). Note that our baselines are trained with the
Places365-Standard while those challenge entries are
trained on the Places365-Challenge which has 5.5 million
more training images.

5.4 Generic Visual Features from Places-CNNs
and ImageNet-CNNs

We further used the activation from the trained Places-
CNNs as generic features for visual recognition tasks using
different image classification benchmarks. Activations from
the higher-level layers of a CNN, also termed deep features,
have proven to be effective generic features with state-of-
the-art performance on various image datasets [33], [34].
But most of the deep features are from the CNNs trained on
ImageNet, which is mostly an object-centric dataset.

Here we evaluated the classification performances of the
deep features from scene-centric CNNs and object-centric
CNNSs in a systematic way. The deep features from several
Places-CNNs and ImageNet-CNNs on the following scene
and object benchmarks are tested: SUN397 [16], MIT Indoor67
[15], Scenel5 [13], SUN Attribute [35], Caltech101 [36],
Caltech256 [37], Stanford Action40 [38], and UIUC Event8 [39].

All of the presented experiments follow the standards in
the mentioned papers. In the SUN397 experiment [16], the

7. http:/ /places2.csail.mit.edu/results2016.html
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TABLE 3
Classification Accuracy/Precision on Scene-Centric Databases (the First Four Datasets) and Object-Centric Databases
(the Last Four Datasets) for the Deep Features of Various Places-CNNs and ImageNet-CNNs

Deep Feature

SUN397 MIT Indoor67 Scenel5 SUN Attribute Caltech101 Caltech256 Action40 Event8 Average

Places365-AlexNet 56.12 70.72 89.25
Places205-AlexNet 54.32 68.24 89.87
ImageNet-AlexNet 42.61 56.79 84.05
Places365-GoogLeNet  58.37 73.30 91.25
Places205-GoogLeNet  57.00 75.14 90.92
ImageNet-GoogLeNet  43.88 59.48 84.95
Places365-VGG 63.24 76.53 91.97
Places205-VGG 61.99 79.76 91.61
ImageNet-VGG 48.29 64.87 86.28
Hybrid1365-VGG 61.77 79.49 92.15

92.98 66.40 46.45 46.82 90.63  69.92
92.71 65.34 45.30 43.26 9417  69.15
91.27 87.73 66.95 55.00 93.71  72.26
92.64 61.85 44.52 47.52 91.00  70.06
92.09 54.41 39.27 45.17 9275  68.34
90.70 89.96 75.20 65.39 96.13 75.71
92.99 67.63 49.20 52.90 90.96  73.18
92.07 67.58 49.28 53.33 93.33 73.62
91.78 88.42 74.96 66.63 95.17  77.05
92.93 88.22 76.04 68.11 93.13  81.48

All the accuracy/precision is the top-1 accuracy/precision.

training set size is 50 images per category. Experiments
were run on 5 splits of the training set and test set given in
the dataset. In the MIT Indoor67 experiment [15], the train-
ing set size is 100 images per category. The experiment is
run on the split of the training set and test set given in the
dataset. In the Scenel5 experiment [13], the training set size
is 50 images per category. Experiments are run on 10 ran-
dom splits of the training set and test set. In the SUN Attri-
bute experiment [35], the training set size is 150 images per
attribute. The reported result is the average precision. The
splits of the training set and test set are given in the paper.
In Caltech101 and Caltech256 experiment [36], [37], the
training set size is 30 images per category. The experiments
are run on 10 random splits of the training set and test set.
In the Stanford Action40 experiment [38], the training set
size is 100 images per category. Experiments are run on 10
random splits of the training set and test set. The reported
result is the classification accuracy. In the UIUC Event8
experiment [39], the training set size is 70 images per cate-
gory and the test set size is 60 images per category. The
experiments are run on 10 random splits of the training set
and test set.

Places-CNNs and ImageNet-CNNs have the same net-
work architectures for AlexNet, GoogLeNet, and VGG, but
they are trained on scene-centric data (Places) and object-
centric data (ImageNet) respectively. For AlexNet and
VGG, we used the 4,096-dimensional feature vector from
the activation of the Fully Connected Layer (£c7) of the
CNN. For GoogLeNet, we used the 1,024-dimensional fea-
ture vector from the response of the global average pooling
layer before softmax producing the class predictions. The
classifier in all of the experiments is a linear SVM with the
default parameter for all of the features.

Table 3 summarizes the classification accuracy on vari-
ous datasets for the deep features of Places-CNNs and the
deep features of the ImageNet-CNNs. Fig. 14 plots the clas-
sification accuracy for different visual features on the
SUN397 database over different numbers of training sam-
ples per category. The classifier is a linear SVM with the
same default parameters for the two deep feature layers
(C =1) [40]. The Places-CNN features show impressive per-
formance on scene-related datasets, outperforming the
ImageNet-CNN features. On the other hand, the ImageNet-
CNN features show better performance on object-related
image datasets. Importantly, our comparison shows that

Places-CNN and ImageNet-CNN have complementary
strengths on scene-centric tasks and object-centric tasks, as
expected from the type of the datasets used to train these
networks. On the other hand, the deep features from the
Places365-VGG achieve the best performance (63.24 percent)
on the most challenging scene classification dataset
SUN397, while the deep features of Places205-VGG per-
forms the best on the MIT Indoor67 dataset. As far as we
know, they are the state-of-the-art scores achieved by a sin-
gle feature + linear SVM on those two datasets. Further-
more, we merge the 1,000 classes from the ImageNet and
the 365 classes from the Places365-Standard to train a VGG
(Hybrid1365-VGG). The deep feature from the Hybrid1365-
VGG achieves the best score averaged over all the eight
image datasets.

5.5 Visualization of the Internal Units

Through the visualization of the unit responses for various
levels of network layers, we can have a better understanding
of what has been learned inside CNNs and what are the dif-
ferences between the object-centric CNN trained on Image-
Net and the scene-centric CNN trained on Places given that
they share the same architecture AlexNet. Following the
methodology in [2] we feed 100,000 held-out testing images

70
~—— Combined kernel [37.5]

HoG2x2 [26.3]
——DenseSIFT [23.5]
Ssim [22.7]
——Geo texton [22.1]
Texton [21.6]
—Gist [16.3]

LBP [14.7)
——ImageNet-AlexNet [42.6]
—— Places205-AlexNet [54.3]
- - - Places365-VGG [63.24]

60
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Fig. 14. Classification accuracy on the SUN397 Dataset. We compare
the deep features of Places365-VGG, Places205-AlexNet (result
reported in [1]), and ImageNet-AlexNet, to hand-designed features
(HOG, gist, etc). The deep features of Places365-VGG outperforms
other deep features and hand-designed features by a large margin.
Results of other hand-designed features/kernels are fetched from [16].
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Fig. 15. a) Visualization of the units’ receptive fields at different layers for the ImageNet-CNN and Places-CNN. Subsets of units at each layer are
shown. In each row we show the top 3 most activated images. Images are segmented based on the binarized spatial feature map of the units at differ-
ent layers of ImageNet-CNN and Places-CNN. Here we take ImageNet-AlexNet and Places205-AlexNet as the comparison examples. See the
detailed visualization methodology in [2].

Fig. 17. The synthesized images preferred by the conv5 units of the Places365-AlexNet corresponds to the segmented images by the receptive
fields of those units. The synthetic images are very similar to the segmented image regions of the units. Each row of the segmented images corre-
spond to one unit.
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into the two networks and record the max activation of each
unit pooled over the whole spatial feature map for each of
the images respectively. For each unit, we get the top three
ranked images by ranking their max activations, then we
segment the images by bilinear upsampling the binarized
spatial feature map mask.

The image segmentation results of the units from differ-
ent layers are shown in Fig. 15. We can see that from conv1l
to conv5, the units detect visual concepts from low-level
edge/texture to high-level object/scene parts. Furthermore,
in the object-centric ImageNet-CNN there are more units
detecting object parts such as dog and people’s heads in the
conv5 layer, while in the scene centric Places-CNN there
are more units detecting scene parts such as bed, chair, or
buildings in the conv5 layer.

Thus the specialty of the units in the object-centric CNN
and scene-centric CNN vyield very different performances of
generic visual features on a variety of recognition bench-
marks (object-centric datasets versus scene-centric datasets)
in Table 3.

We further synthesized preferred input images for the
Places-CNN by using the image synthesis technique pro-
posed in [41]. This method uses a learned prior deep gener-
ator network to generate images which maximize the final
class activation or the intermediate unit activation of the
Places-CNN. The synthetic images for 50 scene categories
are shown in Fig. 16. These abstract image contents reveal
the knowledge of the specific scene learned and memorized
by the Places-CNN: examples include the buses within
a road environment in the bus station, and the tents
surrounded by forest-types of features for the campsite.
Here we used Places365-AlexNet (other Places365-CNNs
generated similar results). We further used the synthesis
technique to generate the images preferred by the units in
the conv5 layer of Places365-AlexNet. As shown in Fig. 17,
the synthesized images are very similar to the segmented
image regions by the estimated receptive field of the units.

6 CONCLUSION

From the Tiny Image dataset [42], to ImageNet [11] and
Places [1], the rise of multi-million-item dataset initiatives
and other densely labeled datasets [18], [20], [43], [44] have
enabled data-hungry machine learning algorithms to reach
near-human semantic classification of visual patterns, like
objects and scenes. With its category coverage and high-
diversity of exemplars, Places offers an ecosystem of visual
context to guide progress on scene understanding prob-
lems. Such problems could include determining the actions
happening in a given environment, spotting inconsistent
objects or human behaviors for a particular place, and pre-
dicting future events or the cause of events given a scene.
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