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Abstract—In very fast recognition tasks, scenes are identified
as fast as isolated objects. How can this efficiency be achieved,
considering the large number of component objects and inter-
fering factors, such as cast shadows and occlusions? Scene
categories tend to have distinct and typical spatial organiza-
tions of their major components. If human perceptual struc-
tures were tuned to extract this information early in processing,
a coarse-to-fine process could account for efficient scene rec-
ognition: A coarse description of the input scene (oriented
“blobs’’ in a particular spatial organization) would initiate rec-
ognition before the identity of the objects is processed. We
report two experiments that contrast the respective roles of
coarse and fine information in fast identification of natural
scenes. The first experiment investigated whether coarse and
fine information were used at different stages of processing.
The second experiment tested whether coarse-to-fine process-
ing accounts for fast scene categorization. The data suggest
that recognition occurs at both coarse and fine spatial scales.
By attending first to the coarse scale, the visual system can get
a quick and rough estimate of the input to activate scene sche-
mas in memory; attending to fine information allows refine-
ment, or refutation, of the raw estimate.

Imagine a simple experiment. You are sitting in front of a
screen on which slides of real-world scenes are projected in
rapid succession (at a rate of, e.g., 125 ms/slide). In a period of
asecond, you see a living room, a city, a highway, a valley, and
four other distinct scenes. Your instructions are to press a but-
ton as soon as you see a highway scene.

The difficulty of this task should not be underestimated.
Each picture is presented very briefly on the display, immedi-
ately masked by another unrelated picture, and the exact ap-
pearance of the target stimulus cannot be predicted from its
categorical membership. Naturally, the conjunction of trucks,
cars, highway lamps, and road signs would strongly suggest a
highway stimulus, but objects in real scenes are often difficult
to identify in 125 ms. Furthermore, in a highway scene, cars and
trucks may occlude one another; shadows cast by objects such
as highway lamps, advertisement panels, or trees on the side of
the highway may hide other objects from view or even darken
complete portions of the highway. One might expect that these
factors would make it difficult to recognize scenes in 125 ms,
but results of such an experiment (see Potter, 1975) suggest that
human subjects are able to perform the detection task with high
efficiency (see also Thorpe, Beley, & Krupa, 1993). This finding
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illustrates a puzzling problem in scene analysis: How can a
scene be so rapidly recognized despite its variability, large num-
ber of component objects, and multiple sources of interfering
factors in the image?

In general, the scene schema hypothesis (Antes & Penland,
1981; Biederman, 1981; de Graef, 1992; Friedman, 1979; Hen-
derson, 1992) suggests that fast scene recognition depends on
the early activation of a few scene representations in memory to
drive a top-down extraction of information in the noisy input.
The nature of the information responsible for the early activa-
tion of scene schemas is the topic of this article. We suggest that
scene recognition operates at different precision and time scales
in information-specific pathways. To get a quick and rough es-
timate of the input scene—to activate scene schemas—very fast
recognition processes could rely on coarse information that is
readily extractable. Depending on the nature of the recognition
task, this rough estimate could be fine-tuned by additional bot-
tom-up processing in fine-grained channels.

TIME- AND SPATIAL-SCALE-DEPENDENT
SCENE RECOGNITION

Modern approaches to vision often conceive of scene recog-
nition as the penultimate result of a gradual bottom-up extrac-
tion of information from sense data. For example, in the com-
putational approach (Hildreth & Ullman, 1990; Marr, 1982),
early processing is decomposed into many modules dedicated
to simple tasks (e.g., edge detection, motion perception, stereo
and shading perception) whose outputs are integrated into more
complicated modules such as object and scene recognition
(Biilthoff & Mallot, 1988). Object-based scene recognition as-
sumes a similar flow of information: A scene is recognized after
a few diagnostic objects are recognized from local information
such as object contours (Antes, Mann, & Penland, 1981). Even
if some objects are more diagnostic than others of a particular
scene category (a car, e.g., could indicate a highway scene, but
also a parking lot, a commercial center, a city, or even a book-
shelf scene), the conjunction of trucks, cars, highway lamps,
and road signs strongly suggests a highway stimulus. Given
enough time to freely explore a scene with multiple saccades,
object-based recognition should quickly reduce the uncertainty
of the input scene.

Tachistoscopic studies have shown that scenes can be rec-
ognized in a single glance—in less than 250 to 300 ms (Bieder-
man, 1981, 1988; Biederman, Mezzanotte, & Rabinowitz, 1982;
Potter, 1976). Is this type of fast recognition object-based, or
does it depend on some other kind of scene-based information
that could bypass the expensive bottom-up hierarchy and acti-
vate scene schemas early in processing?

In the space of real-world scenes, distinct categories tend to
have distinct and typical spatial organizations of their major
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components. This global organization could provide scene- | coarse channels capturing low-level qualities of images and fine
specific information sufficient for fast recognition. Consider the | channels extracting finer details (Campbell & Robson, 1968;
highway category. Most highways tend to go in straight lines, | Marr & Hildreth, 1980; Schiller & Logothetis, 1992; Watson &
with long, sweeping curves frequently “‘attached’” to the Nichmias, 1977).
ground. Of course, there might be atypical exemplars (such as What concerns us here is not so much the spatial frequencies
a very twisted highway crossing a city above ground level), but themselves, but the information they convey for scene recog-
most highways tend to be straight and close to the ground. By nition. Presumably, recognition depends on blobs, edges, tex-
design and because of physical constraints, the global structure ture, and other higher order statistics that are vehiculated by
of city scenes is quite different. The two-dimensional projection scale-specific channels. To illustrate, the bottom pictures of
of a typical city has a dense vertical organization, with most of | Figure | represent the coarse information of the top scenes. At
the components in the lower part of the image. Even if many | a coarse spatial scale, scenes are represented as clusters of
objects are difficult to recognize from the image (e.g., because oriented blobs of specific sizes and aspect ratios, organized in
they are partially occluded), the global organization of the im- | particular graphs of spatial relationships. Although no isolated
age should be more characteristic of the city category than of | object can be identified precisely at this level of resolution, the
the highway category. overall spatial organization of the blobs carries relevant infor-
Our belief is that the regularity of spatial organization of mation about the scene category-. Such spatial graphs may con-
scene categories might provide the information for a mechanism | vey scene-based information sufficient to constrain the selec-
by which scene schemas are activated. There is considerable | tion of allowable scene schemas, thereby facilitating later
psychophysical and neurophysiological evidence that the bot- object-based recognition. Object-based recognition might re-
tom-up flow of visual information is vertically organized into quire information of another nature: It has been argued that the
scale-specific channels (spatial frequency channels), with | precise identification of objects uses primarily the object edges

Fig. 1. Examples of stimuli used in Experiment 1. The bottom pictures show the coarse information of the two scenes in the top
pictures. The procedures used for computing the bottom images involved standard filtering techniques of signal processing. They
are explained in more detail in the appendix.
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provided by fine-grained channels (Biederman & Ju, 1988; Marr
& Hildreth, 1980).

The studies reported in this article examined the respective
roles of coarse blobs and fine boundary edges in scene recog-
nition at a glance. We investigated whether these two sources of
information were used in a particular sequence over the course
of fast and leisurely scene processing. We then tested whether
a coarse-to-fine (CtF) sequence accounted for fast scene cate-
gorization.

EXPERIMENT 1

This experiment tested how coarse and fine information con-
tribute to scene processing. Our strategy was to provide scale-
specific channels with different information by using hybrid
sample stimuli in a yes/no matching task. The hybrids were a
mixture of the blobs of one scene and the boundary edges of
objects of another scene (e.g., the coarse information of a high-
way added to the boundary edges of a city scene, or vice versa;
see Fig. 2). We expected to find that variation in the presenta-
tion time of hybrid scenes would change their interpretation,
thereby showing distinctive uses of information at different
stages of processing, compatible with a CtF analysis. For very
brief presentations, we expected subjects to match the blobs of
a hybrid (the scene-based information) with the target stimulus,
disregarding the fine-edge structure (the object-based informa-
tion). Conversely, at longer presentations of the same hybrid,
we expected subjects’ judgments to depend on boundary edges.

Methods

Twenty adult subjects (10 per condition) volunteered their
time to participate in a yes/no matching task. A sample was
presented on a computer monitor for one of two durations (30
ms in the short condition and 150 ms in the long condition),
followed by a mask and a target stimulus. Subjects were in-
structed to indicate whether the sample matched the target by
pressing the “‘yes’” or “‘no’” key on a computer keyboard. Stim-
uli were 256 gray-level pictures of four scenes: a highway, a
city, a living room, and a valley. The four scenes were chosen
with the constraint that their overall contrast was similar (more
formally, their Fourier amplitude spectra were highly correlated
with one another). Samples were either normal (N), low-passed
(LF), high-passed (HF), or hybrid pictures of scenes. (See the
appendix for a more detailed explanation of the filtering proce-
dure.) A hybrid could match either the low frequencies (LF-
hybrid) or the high frequencies (HF-hybrid) of the target (see
Fig. 2). The target was always an N picture. The experiment
consisted of a random presentation of 240 trials divided equally
into matching trials (the “‘yes’ trials) and nonmatching trials
(the **no’” trials). In the latter case, sample and target were
pictures of different scenes.

Results and Discussion

To establish a CtF use of information, we must show (a) that
the control LF and HF stimuli were perceived correctly in the
short and long conditions plus (b) that the hybrid stimuli were
interpreted differently in the two conditions (despite availability
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Fig. 2. Examples of the hybrid stimuli used in Experiment 1
and Experiment 2. Hybrids were constructed by combining the
low-frequency (LF) components of the amplitude and phase
spectra of one scene (e.g., a highway) with the high-frequency
(HF) components of another scene (e.g., a city; see the appen-
dix for more details on the procedure). Twelve hybrids were
constructed by taking each possible combination of the four
scenes. The top picture mixes the LF components of a highway
and the HF components of a city. This picture would qualify as
an LF-hybrid (vs. HF-hybrid) if the target was a highway (vs. a
city). The bottom picture mixes the LF components of a city
with the HF components of a highway. These stimuli were dis-
played on the color monitor of an Apple Macintosh Quadra. In
Experiment 2, the hybrids shown in the figure were combined in
an animated sequence: The top picture was presented first, and
the bottom hybrid followed immediately. Each stimulus sub-
tended 6.27 X 4.38° of visual angle on the display (subjects
stood 150 cm from the screen).

of coarse and fine information). Table 1 summarizes perfor-
mance on matching trials for LF-hybrid, HF-hybrid, LF, HF,
and N samples.

A two-way analysis of variance for exposure duration (short
vs. long) by sample type (N vs. LF vs. HF vs. LF-hybrid vs.
HF-hybrid) indicates the significance of the main effect of con-
dition (F[1, 18] = 8.254, p = .01), the main effect of sample
type (F[4, 72] = 103.933, p < .001), and the interaction of
condition and sample type (F[4, 72] = 58.74, p < .001). The
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Experiment 1

Table 1. Hit rates, false alarm rates, and d' for the yes/no matching task of

Sample®
Statistic LF-hybrid HF-hybrid LF HF N
Short condition
Hit rate .63 28 .90 a5 .94
False alarm rate .04 .05 .08 .05 .02
d 2.08 1.06 2.68 2.32 >3.0
Long condition
Hit rate 18 .86 .97 1.0 .98
False alarm rate .01 .02 .01 .01 .01
d’ 1.4 >3.0 >3.0 >3.0 >3.0

See the text for further explanation.

a The five kinds of samples were low-frequency hybrids (LF-hybrid), high-frequency hybrids
(HF-hybrid), low-passed samples (LF), high-passed samples (HF), and normal samples (N).

average difference of correct matches between the two types of
hybrids in each duration shows a significant interaction, #(18) =
11.18, p < .001; this interaction means that subjects gave dis-
tinct interpretations of the same hybrid stimuli in the two ex-
perimental conditions. For example, subjects in the short con-
dition preferentially matched the top picture of Figure 2 with a
highway, but subjects in the long condition matched the same
picture with a city.

Could it be that the fine-grained information was simply not
perceived in the short condition? If boundary edges were not
available in the short condition, then this explanation could
partially account for the interaction. However, this interpreta-
tion is ruled out by the control samples, LF and HF, whose high
d' values confirm that both low and high frequencies were de-
tected in each condition. Still, despite the availability of all
frequency information for matching, the hit-rate differences be-
tween the HF-hybrid and HF samples in the short condition
(.47) and between the LF-hybrid and LF samples in the long
condition (.79) indicate clearly that each condition solicited
preferentially one type of recognition information. These re-
sults suggest a decoupling of coarse and fine information in fast
scene analysis: Spatial relationships of sized and oriented blobs
dominate very fast processing, but boundary edges and outputs
of other low-level modules take over when more processing
time is allowed. This CtF mode of processing suggests that
there is enough information at coarse scales to initiate scene
categorization.

EXPERIMENT 2

Results of Experiment 1 demonstrate CtF processing in a
scene-matching task. A matching task could, however, trigger
processes and representations atypical of spontaneous catego-
rization. A test of the CtF recognition hypothesis must tap into
categorization processes. Experiment 2 expanded the hybrid
methodology to test whether fast scene categorization is coarse-
to-fine. Our strategy was to present the visual system simulta-
neously with two distinct sequences of scene information
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(coarse-to-fine and fine-to-coarse) and record which sequence
was preferentially categorized. For example, consider an ani-
mated sequence of the two hybrids of Figure 2: The top hybrid
is presented first, immediately followed by the bottom hybrid.
This animated sequence is inherently ambiguous: A CtF reading
integrates the blobs of the top hybrid with the boundary edges
of the bottom hybrid in a highway interpretation, and a fine-to-
coarse (FtC) reading combines the boundary edges of the top
hybrid with the blobs of the bottom hybrid in a city interpreta-
tion.

To the unbiased observer, both readings and both interpre-
tations should be equally likely. The results of Experiment 1
suggest, however, that fast scene analysis introduces a CtF bias
in processing. If fast scene categorization processes are also
coarse-to-fine, the CtF highway interpretation should be used
more frequently than the FtC city interpretation.

Methods

Twenty adult subjects with normal or corrected vision were
paid to participate in a categorization task. Great care was
taken to measure performance in conditions of fast categoriza-
tion of unknown scenes. Each of four scene categories (living
room, bedroom, city, and highway) was represented by four
distinct picture exemplars. The 16 pictures were combined to
synthesize 48 hybrid stimuli with the constraint that any par-
ticular picture could appear only three times in the hybrids. A
trial consisted of a pair of hybrids presented in rapid succession
on a computer monitor (45 ms/hybrid without interval, to allow
for retinal fusion of the stimuli). Each pair was constructed such
that the blobs of one hybrid and the boundary edges of the other
hybrid were of the same scene. Thus, the CtF and the FtC
readings of a pair always corresponded to two different cate-
gory names. There are 12 possible combinations of 4 categories.
Each trial required two categories, so the 48 hybrids were com-
bined into 24 trials, with an equivalent number of CtF and FtC
readings for each category. Subjects were instructed to catego-
rize each scene they perceived by naming it. We recorded the
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subjects’ categorization responses and monitored their reaction
times with a vocal key.

Results and Discussion

Subjects correctly reported either the CtF or the FtC inter-
pretation of the stimuli on average 96% of the time, with an
average reaction time of 972 ms. The 4% categorization errors
were confusions between the bedroom and living room catego-
ries. Although the CtF and the FtC interpretations were equiv-
alently available at each trial, subjects systematically reported
the CtF interpretation more frequently than the FtC interpreta-
tion (67% vs. 29%, respectively; #[19] = 6.83, p < .001).

These results generalize the findings of Experiment 1 to the
realm of categorization processes: A CtF use of information is
preferred in fast scene identification. If blobs seem to be at-
tended first in conditions of fast categorization, it should be
noted that the opposite, FtC, sequence of information was also
categorized. In Experiment 1, the boundary edges expressed by
high spatial frequencies were detected and therefore available
for recognition from the very first stages of processing (see data
for the HF sample in Table 1). The 29% FtC interpretations in
this experiment confirm this finding and demonstrate that
boundary edges are sometimes the basis of fast categorization,
although they are less relied on than are blobs when scenes are
unknown.

It should be emphasized that subjects could not learn the
particular scenes of the experiment. The pictures were not
shown to subjects prior to the experiment, and each possible
combination of pictures was experienced only once. The ab-
sence of repetition of trials means this was a realistic testing of
natural categorization processes of real-world scenes.

GENERAL DISCUSSION

The aim of these studies was to investigate the nature of the
information used at different stages of very fast scene recogni-
tion—the kind of recognition that occurs in a single eye fixation,
below 250 to 300 ms. Results of Experiment 1 suggest a CtF
processing strategy: The same hybrid stimulus was given a
coarse-scale interpretation or a fine-scale interpretation de-
pending on whether the hybrid was seen briefly or not. The
second experiment showed that in spontaneous categorization
of ambiguous sequences of stimuli, the CtF interpretation was
systematically preferred over the FtC reading. Together, these
results suggest a time- and spatial-scale-dependent scene rec-
ognition process in which the very first stages rely on scene-
specific information and the later stages are object-based. Our
findings are consistent with the idea that a regular spatial orga-
nization of major blobs in a scene could be responsible for the
early activation of scene schemas in memory, but that object-
based recognition dominates the later stages of processing.

These results are in line with the tachistoscopic scene re-
search of Biederman et al. (1982), which also suggests that
coarse edges of the global scene structure can activate scene
schemas. Our research, however, explicitly contrasts the re-
spective roles of coarse and fine information (as defined in a
Fourier scale space) over the course of scene recognition.
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It could be argued that the spatiotemporal properties of tran-
sient and sustained channels could account for a CtF analysis of
spatial frequencies and explain our data. Neurophysiological
studies suggest, however, that this dichotomy does not hold in
the primate cortex.! Furthermore, the HF samples of the first
experiment and the FtC categorizations of Experiment 2 clearly
demonstrate that high spatial frequencies are detected (but only
sometimes used for recognition) after very brief presentations
of stimuli. This finding rules out a simple ‘‘hard-wired”’ expla-
nation based on differences of conduction rates.

Attentional studies have shown that attention can select a
spatial scale for preferred processing (Shulman & Wilson, 1987;
Wong & Weisstein, 1983). This selection could arise from the
interplay between task constraints and the information best
conveyed at each spatial scale. From an informational view-
point, coarse recognition is uncertain because the spatial graph
of an input scene may trigger more than one scene schema in
memory (e.g., the spatial graph of a city may be mistakenly
identified as the one of a desk cluttered with many computer
screens). Nonetheless, blobs reveal salient information about
the global scene structure. Given enough time for visual explo-
ration, a scene can also be recognized after a few criterial ob-
jects are recognized from fine-grained object contours. At finer
spatial scales, however, the edges useful for recognition are
interleaved with a considerable noise level, which can be fil-
tered out only by extensive processing (Marr, 1982; Marr &
Hildreth, 1980; Shashua & Ullman, 1988). In short, if coarse-
scale information is more salient than fine-scale information,
this saliency advantage is offset by the higher uncertainty of
“‘blob recognition.”’

In the soft-wiring view, task constraints might guide the at-
tentional selection of spatial scales. If a scene is unknown and
one must categorize it very quickly, highly salient—but uncer-
tain—information may be more efficient for a first rough esti-
mate of the scene’s identity. To paraphrase Navon (1977), for-
est-before-trees is a better strategy than trees-before-forest.
But if one already knows what the scene might be before seeing
it, the informational constraints of a fast verification task might
lead to a selection of trees-before-forest. Grice, Graham, and
Boroughs (1983) showed that an advantage for the global inter-
pretations of larger letters made of smaller letters (see Navon,
1977) could be overcome when subjects could attend to and
fixate the local constituent letters. Although these results do not
explicitly address task constraints and do not test categoriza-
tion of real scenes, they show an effect similar to the FtC
categorizations in our second experiment: Sometimes fine-
before-coarse is preferred in processing. We see these data as
encouraging evidence to support the soft-wiring interpretation
of the CtF hypothesis. This interpretation, together with the
new hybrid methodology, opens new perspectives to study the

1. “There is no evidence, either within the simple cell population or
within the complex cells or within the population as a whole, for a
bimodal distribution of temporal properties such as would justify a di-
chotomy into sustained versus transient cell types. Furthermore a com-
parison of the temporal properties of simple versus complex cells also
indicates little evidence for any significant temporal difference between
these two classes of cells, which differ so drastically in their spatial
properties’’ (de Valois & de Valois, 1990, p. 111).
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interplay between spatial scale information and attention in pro-
cesses of fast and leisurely real-world scene recognition.

—
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APPENDIX

The Fourier transform of an image produces amplitude and phase
spectra in the spatial frequency domain. The amplitude spectrum de-
notes the strength of each frequency in the image, and the phase spec-
trum indicates how the spatial frequencies interact with each other to
create the spatial structure of the image. In order to produce nonbiased
stimuli, the amplitude spectrum of each scene was modified as follows.
We equalized the spectral density energy of each scene stimulus in
order to fit a model of spectral density profile, which was established by
averaging over all scene stimuli. The spectral density energy can be
thought of as a histogram of the energy of each spatial frequency. The
equalization procedure consisted of constraining the histogram of each
scene to fit the model histogram, so that the energy difference between
any two spatial frequencies was the same in all images.

The inverse Fourier transform produces an image from a phase
spectrum and an amplitude spectrum. All the stimuli of Experiment 1
were computed from the low-frequency (LF) components (below 2 cy-
cles/) and the high-frequency (HF) components (above 6 cycles/®) of
the four scenes. The LF and HF components were band passed with a
Butterworth filter of order two in order to avoid the problem of Gibbs
ondulations of hard-limiter filters. Normal (N) stimuli were simply the
addition of LF and HF components of the same scene (see Fig. 1, top
pictures). Hybrids had LF and HF components from different scenes
(see Fig. 2). LF stimuli had pure LF components, and HF stimuli had
pure HF components. (The bottom pictures of Fig. 1 are LF stimuli.)
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