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Primates are remarkably good at recognizing objects. The level of
performance of their visual system and its robustness to image
degradations still surpasses the best computer vision systems
despite decades of engineering effort. In particular, the high
accuracy of primates in ultra rapid object categorization and rapid
serial visual presentation tasks is remarkable. Given the number of
processing stages involved and typical neural latencies, such rapid
visual processing is likely to be mostly feedforward. Here we show
that a specific implementation of a class of feedforward theories of
object recognition (that extend the Hubel and Wiesel simple-to-
complex cell hierarchy and account for many anatomical and
physiological constraints) can predict the level and the pattern of
performance achieved by humans on a rapid masked animal vs.
non-animal categorization task.

object recognition � computational model � visual cortex � natural scenes �
preattentive vision

Object recognition in the cortex is mediated by the ventral visual
pathway running from the primary visual cortex (V1) (1)

through extrastriate visual areas II (V2) and IV (V4), to the
inferotemporal cortex (IT) (2–4), and then to the prefrontal cortex
(PFC), which is involved in linking perception to memory and
action. Over the last decade, a number of physiological studies in
nonhuman primates have established several basic facts about the
cortical mechanisms of recognition. The accumulated evidence
points to several key features of the ventral pathway. From V1 to
IT, there is an increase in invariance to position and scale (1, 2, 4–6)
and in parallel, an increase in the size of the receptive fields (2, 4)
as well as in the complexity of the optimal stimuli for the neurons
(2, 3, 7). Finally, plasticity and learning are probably present at all
stages and certainly at the level of IT (6) and PFC.

However, an important aspect of the visual architecture, i.e.,
the role of the anatomical back projections abundantly present
between almost all of the areas in the visual cortex, remains a
matter of debate. The hypothesis that the basic processing of
information is feedforward is supported most directly by the
short time spans required for a selective response to appear in
IT cells (8). Very recent data (9) show that the activity of small
neuronal populations in monkey IT, over very short time inter-
vals (as small as 12.5 ms) and only �100 ms after stimulus onset,
contains surprisingly accurate and robust information support-
ing a variety of recognition tasks. Although this finding does not
rule out local feedback loops within an area, it does suggest that
a core hierarchical feedforward architecture may be a reasonable
starting point for a theory of visual cortex aiming to explain
immediate recognition, the initial phase of recognition before
eye movements and high-level processes can play a role (10–13).

One of the first feedforward models, Fukushima’s Neocogni-
tron (14), followed the basic Hubel and Wiesel proposal (1) for
building an increasingly complex and invariant object represen-
tation in a hierarchy of stages by progressively integrating
convergent inputs from lower levels. Building on several existing
neurobiological models (5, 15–19, ¶), conceptual proposals (1, 2,
20, 21), and computer vision systems (14, 22), we have been
developing (5, 23, �) a similar computational theory (see Fig. 1)

that attempts to quantitatively account for a host of recent
anatomical and physiological data.

The model is a simple and direct extension of the Hubel and
Wiesel simple-to-complex cell hierarchy: It takes as an input a
gray-value image (256 � 256 pixels, �7° � 7° of visual angle) that
is first analyzed by a multidimensional array of simple S1 units
which, like cortical simple cells, respond best to oriented bars and
edges. S1 units are modeled as half-rectified filters consisting of
aligned and alternating ‘‘on’’ and ‘‘off’’ subregions, which share a
common axis of elongation that defines the cell-preferred orienta-
tion [see supporting information (SI) Text for details]. S1 units come
in four orientations and several different scales (see SI Fig. 9) and
densely cover the input image. The next C1 level corresponds to
striate complex cells (1). Each of the complex C1 units receives the
outputs of a group of simple S1 units with the same preferred
orientation (and two opposite phases) but at slightly different
positions and sizes (or peak frequencies). The result of the pooling
over positions and sizes is that C1 units become insensitive to the
location and scale of the stimulus within their receptive fields, which
is a hallmark of cortical complex cells (1). The parameters of the S1
and C1 units (see SI Table 1) were adjusted so as to match as closely
as possible the tuning properties of V1 parafoveal simple and
complex cells (receptive field size, peak frequency, frequency, and
orientation bandwidth; see ref. 24 for details).

Feedforward theories of visual processing, like the model de-
scribed here, consist of extending these two classes of simple and
complex cells to extrastriate areas. By alternating between S layers
of simple units and C layers of complex units, the model achieves
a difficult tradeoff between selectivity and invariance: Along the
hierarchy, at each S stage, simple units become tuned to features of
increasing complexity (e.g., from single oriented bars to combina-
tions of oriented bars forming corners and features of intermediate
complexities) by combining afferents (C units) with different
selectivities (e.g., units tuned to edges at different orientations). For
instance, at the S2 level (respectively S3), units pool the activities of
retinotopically organized afferent C1 units (respectively C2 units)
with different orientations (different feature tuning), thus increas-
ing the complexity of the representation: From single bars to
combinations of oriented bars forming contours or boundary
conformations. Conversely, at each C stage, complex units become
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increasingly invariant to 2D transformations (position and scale) by
combining afferents (S units) with the same selectivity (e.g., a
vertical bar) but slightly different positions and scales.

The present theory significantly extends an earlier model (5). It
follows the same general architecture and computations. The
simple S units perform a bell-shaped tuning operation over their
inputs. That is, the response y of a simple unit receiving the pattern
of synaptic inputs (x1, . . . , xnSk

) from the previous layer is given by

y � exp �
1

2�2 �
j�1

nsk

�wj � xj�
2 , [1]

where � defines the sharpness of the tuning around the preferred
stimulus of the unit corresponding to the weight vector w � (w1,
. . . . , wnSk

). That is, the response of the unit is maximal (y � 1) when
the current pattern of input x matches exactly the synaptic weight

vector w and decreases with a bell-shaped tuning profile as the
pattern of input becomes more dissimilar. Conversely, the pooling
operation at the complex C level is a max operation. That is, the
response y of a complex unit corresponds to the response of the
strongest of its afferents (x1, . . . , xnCk

) from the previous Sk layer:

y � max
j�1. . . nCk

x j. [2]

Details about the two key operations can be found in SI Text (see
also ref. 23).

This class of models seems to be qualitatively and quantitatively
consistent with [and in some cases actually predicts (23)] several
properties of subpopulations of cells in V1, V4, IT, and PFC (25)
as well as fMRI and psychophysical data. For instance, the model
predicts (23), at the C1 and C2 levels, respectively, the max-like
behavior of a subclass of complex cells in V1 (26) and V4 (27). It
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Fig. 1. Sketch of the model. Tentative mapping between the ventral stream in the primate visual system (Left) and the functional primitives of the feedforward
model (Right). The model accounts for a set of basic facts about the cortical mechanisms of recognition that have been established over the last decades: From
V1 to IT, there is an increase in invariance to position and scale (1, 2, 4–6), and in parallel, an increase in the size of the receptive fields (2, 4) as well as in the
complexity of the optimal stimuli for the neurons (2, 3, 7). Finally, adult plasticity and learning are probably present at all stages and certainly at the level of IT
(6) and PFC. The theory assumes that one of the main functions of the ventral stream, just a part of the visual cortex, is to achieve a tradeoff between selectivity
and invariance within a hierarchical architecture. As in ref. 5, stages of simple (S) units with Gaussian tuning (plain circles and arrows) are loosely interleaved
with layers of complex (C) units (dotted circles and arrows), which perform a max operation on their inputs and provide invariance to position and scale (pooling
over scales is not shown). The tuning of the S2, S2b, and S3 units (corresponding to V2, V4, and the posterior inferotemporal cortex) is determined here by a prior
developmental-like unsupervised learning stage (see SI Text). Learning of the tuning of the S4 units and of the synaptic weights from S4 to the top classification
units is the only task-dependent, supervised-learning stage. The main route to IT is denoted with black arrows, and the bypass route (38) is denoted with blue
arrows (see SI Text). The total number of units in the model simulated in this study is on the order of 10 million. Colors indicate the correspondence between
model layers and cortical areas. The table (Right) provides a summary of the main properties of the units at the different levels of the model. Note that the model
is a simplification and only accounts for the ventral stream of the visual cortex. Of course, other cortical areas (e.g., in the dorsal stream) as well as noncortical
structures (e.g., basal ganglia) are likely to play a role in the process of object recognition. The diagram (Left) is modified from ref. 58 (with permission from the
author) which represents a juxtaposition of the diagrams of refs. 46 and 59.
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also shows good agreement (23) with other data in V4 (28) about
the response of neurons to combinations of simple two-bar stimuli
(within the receptive field of the S2 units), and some of the C2 units
in the model show a tuning for boundary conformations which is
consistent with recordings from V4 (29) (C. Cadieu, M. Kouh, A.
Pasupathy, C. Connor, and T.P., unpublished work). Readout from
C2b units in the model described here predicted (23) recent readout
experiments in IT (9), showing very similar selectivity and invari-
ance for the same set of stimuli. In addition, plausible biophysical
circuits may implement the two key operations (5) assumed by the
theory within the time constraints of the experimental data (8).

Because this feedforward model appears to agree with physio-
logical data while performing well in the recognition of natural
images, it is natural to ask how well it may predict human perfor-
mance in complex object-recognition tasks. Of course as a feed-
forward model of the ventral stream pathway, the architecture of
Fig. 1 cannot account for our everyday vision which involves eye
movements and top-down effects, which are mediated by higher
brain centers and the extensive anatomical back projections found
throughout the visual cortex, and are not implemented in the
present feedforward model. Thus, a natural paradigm for compar-
ing the performance of human observers in an object-recognition
task to that of a feedforward model of visual processing is ultra
rapid categorization, a task for which back projections are likely to
be inactive (30, 31). A well established experiment is an animal- vs.
non-animal-recognition task (30–34).

Results
Animals in natural scenes constitute a challenging class of stimulus
because of large variations in shape, pose, size, texture, and position
in the scene (see SI Text for the performance of several benchmark
systems). To vary the difficulty of the task, we used four sets of
balanced image categories (150 animals and 150 matching distrac-
tors in each set, i.e., 1,200 total stimuli; see Materials and Methods),
each corresponding to a particular viewing distance from the
camera, from an animal head to a small animal or groups of animals
in cluttered natural backgrounds (i.e., ‘‘head,’’ ‘‘close-body,’’
‘‘medium-body,’’ and ‘‘far-body’’ categories; see Fig. 2a and Mate-
rials and Methods).

When testing human observers, we used a backward-masking
protocol (1/f noise image with a duration of 80 ms; see Fig. 2b)
with a long 50-ms stimulus onset asynchrony [SOA; 50-ms SOA
corresponding to a 20-ms stimulus presentation followed by a

30-ms interstimulus interval (ISI)]. It was found (31) that
increasing the SOA on a similar animal- vs. non-animal-
categorization task above 44 ms only has a minor effect on
performance (accuracy scores for longer SOA conditions were
not significantly different). At the same time, we expect the mask
to block significant top-down effects through the back projec-
tions (see Discussion and SI Text). In the present version of the
model, processing by the units (the nodes of the graph in Fig. 1)
is approximated as essentially instantaneous (see, however,
possible microcircuits involved in the tuning and max operation
in ref. 23). All of the processing time would be taken by synaptic
latencies and conduction delays (see SI Text). The model was
compared with human observers in three different experiments.

A comparison between the performance of human observers
(n � 24, 50-ms SOA) and the feedforward model in the animal
classification task is shown in Fig. 3a. Performance is measured by
the d�, a monotonic function of the performance of the observers
which combines both the hit and false-alarm rates of each observer
into one standardized score [see Materials and Methods; other
accuracy measures such as error rates or hits gave similar results
(see SI Text)]. The task-specific circuits of the model from IT to
PFC were trained for the animal- vs. non-animal-categorization
task in a supervised way using a random split procedure (see
Materials and Methods) on the entire database of stimuli (i.e., in a
given run, half of the images were selected at random for training
and the other half were used for testing the model). Human
observers and the model behave similarly: Across all four animal
categories, their levels of performance do not show significant
differences (with overall correct � 80% for human observers and
82% for the model). It should be noted that no single model
parameter was adjusted to fit the human data (all parameters apart
from the supervised stage from IT to PFC were fixed before all tests
by taking into account the physiology data from V1 to IT). The
accuracy of the human observers is well within the range of data
previously obtained with go/no-go tasks on similar tasks (30, 31, 33).

Most importantly, both the model and human observers tend to
produce similar responses (both correct and incorrect; see Fig. 3).
We measured quantitatively the agreement between human ob-
servers and the model on individual images. For each image in the
database, we computed the percentage of observers (black values
above each panel) who classified it as an animal (irrespective of
whether the image contains an animal). For the model, we com-
puted the percentage of times the model (green values) classified
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Mask (80 ms)

+

Animal present? 

~50 ms SOA

Head       Close-body  Medium-body   Far-body
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Natural
distractors

Artificial
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a

Fig. 2. Animal- vs. non-animal-categorization task. (a) The four (balanced) classes of stimuli. Animal images (a subset of the image database used in ref. 30)
were manually arranged into four groups (150 images each) based on the distance of the animal from the camera: head (close-up), close-body (animal body
occupying the whole image), medium-body (animal in scene context), and far-body (small animal or groups of animals). Each of the four classes corresponds to
different animal sizes and, probably through the different amount of clutter relative to the object size, modulates the task difficulty. A set of matching distractors
(300 each from natural and artificial scenes; see Materials and Methods) was selected so as to prevent human observers and the computational model from relying
on low-level cues (see SI Text). (b) Schematic of the task. A stimulus (gray-level image) is flashed for 20 ms, followed by a blank screen for 30 ms (i.e., SOA of 50
ms), and followed by a mask for 80 ms. Subjects ended the trial with an answer of ‘‘yes’’ or ‘‘no’’ by pressing one of two keys.
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each image as an animal for each of the random runs (during each
run, the model is trained and tested on a different set of images and
therefore, across several runs the same test image may be classified
differently by the model). A percentage of 100% (50%) means that
all (half) the observers (either human observers or random runs of
the model) classified this image as an animal. The overall image-
by-image correlation between the model and human observers is
high (specifically 0.71, 0.84, 0.71, and 0.60 for heads, close-body,
medium-body, and far-body, respectively, with P � 0.01). Together
with the results of a ‘‘lesion study’’ performed on the model (see SI
Fig. 4), the data suggest that it is the large, overall set of features
from V2 to V4 and the posterior inferotemporal cortex that
underlies such a human-like performance in this task.

To further test the model, we measured the effect of image
rotation (90° and 180°) on performance. Recent behavioral studies
(34)** suggested that the animal categorization task can be per-
formed very well by human observers on rotated images. Can the
model predict human behavior in this situation? SI Fig. 5 shows
indeed that the model (Right) and human observers (Left) show a
similar pattern of performance and are similarly robust to image
rotation. The robustness of the model is particularly remarkable as
it was not retrained before being tested on the rotated images. It is
likely due to the fact that an image patch of a rotated animal is more
similar to an image patch of an upright animal than to a non-animal.

Finally, we replicated previous psychophysical results (31) to test
the influence of the mask on visual processing with four experi-

mental conditions, i.e., when the mask follows the target image
(20-ms presentation): (i) without any delay (‘‘immediate-mask’’
condition), (ii) with a short ISI of 30 ms (50-ms SOA) as in the
previous experiments, (iii) with an ISI of 60 ms (80-ms SOA), or (iv)
never (‘‘no-mask’’ condition). For all four conditions, the target
presentation was fixed to 20 ms as before. As expected, the delay
between the stimulus and the mask onset modulates the level of
performance of the observers improving gradually from the 20-ms
SOA condition to the no-mask condition (see SI Fig. 6). The level
of performance of human observers reached a ceiling in the 80-ms
SOA condition (except when the animal was camouflaged in the
scene, i.e., far-body group). The model predicts human-level hit rate
very well between the 50- and the 80-ms SOA conditions. For SOAs
longer than 80 ms, human observers outperform the model (the
performance for the 50-ms SOA condition, however, is only �5%
lower than the ceiling performance in the no-mask condition). It
remains an open question whether the slightly better performance
of humans for SOAs longer than 80 ms is due to feedback effects
mediated by the back projections (35).

Discussion
The new model implementation used in this study improves the
original model (5) in two significant ways. The major extension is
a new unsupervised learning stage of the units in intermediate
stages of the model (23, �). A key assumption in the new model is
that the hierarchy of visual areas along the ventral stream of the
visual cortex, from V1 to IT, builds a generic dictionary of shape-
tuned units which provides a rich representation for task-specific
categorization circuits in prefrontal areas. Correspondingly, learn-

**Guyonneau, R., Kirchner, H., Thorpe, S. J., European Conference on Visual Perception,
Aug. 22–26, 2005, Corun̂a, Spain.
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Fig. 3. Comparison between the model and human observers. (a) Model- vs. human-level accuracy. Human observers and the model exhibit a very similar pattern
of performance (measured with d � measure; see SI Text). Error bars indicate the standard errors for the model (computed over n � 20 random runs) and for human
observers (computed over n � 24 observers). Examples of classifications by the model and human observers. Common false alarms (b) and misses (c) for the model and
human observers. (d and e) Examples of animal images for which the agreement between the model and human observers is poor (d) and good (e). The percentages
above each thumbnail correspond to the number of times the image was classified as an animal by the model (green values) or by human observers (black values; see
Results for details). Part of the discrepancy between the model and human observers is likely to be due to the relatively small set of examples used to train the model
(300 animal and 300 non-animal images).
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ing proceeds in two independent stages: First, during a slow
developmental-like unsupervised learning stage, units from V1 to
IT become adapted to the statistics of the natural environment (see
SI Text for details). The resulting dictionary is generic and universal
in the sense that it can support several different recognition tasks
(23) and in particular, the recognition of many different object
categories. After this initial unsupervised learning stage, only the
task-specific circuits at the top level in the model, possibly corre-
sponding to categorization units in PFC (25), have to be trained
from a small set of labeled examples and in a task-specific manner
(see Materials and Methods) for the ‘‘mature’’ model to learn a
categorization task (e.g., animal vs. non-animal).

Additionally, the new model is closer to the anatomy and the
physiology of the visual cortex in terms of quantitative parameter
values. For instance, the parameters (see SI Table 1) of the S1 and
C1 model units were constrained by physiology data (1, 36, 37) so
that their tuning properties would agree with those of cortical
simple and complex cells (see SI Text). In addition to the main
routes through the V4 to the IT cortex (4), the model also accounts
for the bypass routes (38) from V2 to the posterior inferotemporal
cortex and from V4 to the anterior inferotemporal cortex (Fig. 1)
[unlike the original model (5)]. A more detailed description of the
model can be found in SI Text, and a software implementation is
accessible from our supplementary online material at http://
cbcl.mit.edu/software-datasets/serre/SerreOlivaPoggioPNAS07/
index.htm.

Not only does this class of feedforward models seem to be able
to duplicate the tuning properties of at least some cortical cells
when probed with artificial stimuli, but it can also handle the
recognition of objects in the real world (39, 40) where objects may
undergo drastic changes in appearance (e.g., clutter, shape, illumi-
nation). Key to the recognition performance of the model is the
large number of tuned units across its hierarchical architecture,
which is a direct consequence of the learning from natural images
and represent a redundant dictionary of fragment-like features (12,
17, 41) that span a range of selectivities and invariances. As a result
of this new learning stage, the architecture of Fig. 1 contains a total
of 107 tuned units. In addition, the model is remarkably robust to
parameter values’ detailed wiring and even exact form of the two
basic operations and of the learning rule (23).

Previous physiological studies have shown that during masked
stimulus presentations, the feedforward bottom-up components of
cortical cells’ response (i.e., the early response from response onset
for a period lasting about the stimulus mask) remains essentially
unaltered whereas the later response is interrupted (see SI Text)
(see also refs. 42, 43, and 44 for recent reviews). Several studies (SI
Text) have shown that this later response includes recurrent pro-
cessing, that is a modulation through back projections from higher
to lower areas. Based on response latencies in the visual cortex (SI
Text), we estimate that significant top-down modulation should
start for stimulus-mask interval �40–60 ms (SI Text). The model
indeed mimics human-level performance for the 50-ms SOA con-
dition. This finding suggests that under these conditions, the present
feedforward model may provide a satisfactory description of infor-
mation processing in the ventral stream of the visual cortex.

Our results indeed agree with several theories of visual process-
ing that suggest that an initial feedforward sweep driven by
bottom-up inputs builds a base representation that relies on a basic
dictionary of generic features (11–13, 17, 41) before more complex
tasks or visual routines can take place through recurrent projections
from higher areas (20, 42, 43, 45). Additionally, our results show the
limit of what a feedforward architecture can do: In agreement with
the human data, the model is able to recognize objects with limited
clutter (see ref. 39 for results on a large database of 101 object
categories). However, when the amount of clutter present in the
images increase, the performance of the model decreases signifi-
cantly. This suggests a key role for the massive back projections
found in the visual cortex (46). Indeed, preliminary results with a

simple extension of the present model (47), which requires top-
down signals from higher to lower areas to limit visual processing
to a ‘‘spotlight of attention’’ centered around the animal target,
shows a significant improvement in the classification performance
on the ‘‘far’’-animal condition. In addition, back projections may be
important for visual awareness and beyond tasks such as visual
categorization for perceptual organization and figure-ground seg-
mentation (48–50) or curve tracing (51).

Nevertheless, our main result is that a simple extension of the
feedforward hierarchical architecture, suggested some 40 years
ago by Hubel and Wiesel and reflecting the known physiology
and anatomy of the visual cortex, correlates well with humans
and exhibits comparable accuracy on a difficult (but rapid)
recognition task. This finding provides computational neuro-
science support to the conjecture that a task-independent,
unsupervised, developmental-like learning stage may exist in the
ventral stream to generate a large dictionary of shape-tuned
units with various degrees of selectivity and invariance from V1
to IT, consistent with recent data (52).

Materials and Methods
Supplementary material is also available at http://cbcl.mit.edu/
software-datasets/serre/SerreOlivaPoggioPNAS07/index.htm and
includes, in particular, a basic software implementation for the
model, the animal-/non-animal-stimulus database, as well as sup-
plementary data including a summary of different error measures
for both the model and human observers (e.g., roc curves).

Stimulus Data Set. All images were gray-value 256 � 256 pixel
images. The stimulus database contains a total of 600 animal stimuli
(a subset of the Corel database as in ref. 30; 256 � 256 image
windows were cropped around the animal from the original 256 �
384 pixel images with a random offset to prevent the animal from
always being presented in the center of the image) and 600
non-animal stimuli. Animal images were manually grouped into
four categories with 150 exemplars in each; that is, head, close-body,
medium-body, and far-body.

A set of distractors with matching mean distance from the
camera (300 from natural and 300 from artificial scenes) was
selected from a database of annotated mean-depth images (53). We
selected images with a mean distance from the camera �1 m for
head, between 5 and 20 m for close-body, between 50 and 100 m for
medium-body, and �100 m and panoramic views for far-body. The
database is publicly available at http://cbcl.mit.edu/software-
datasets/serre/SerreOlivaPoggioPNAS07/index.htm.

Human Psychophysics. All participants (18–35 years old; n � 24 in
the first experiment with a fixed 50-ms SOA; n � 14 in the second
experiment with 0°, 90°, and 180° rotated stimuli; n � 21 in the last
experiment with variable SOAs) gave a written informed consent.
There was approximately the same number of male and female
observers in each experiment and none participated in more than
one of the three experiments. Participants were seated in a dark
room, 0.5 m away from a computer screen connected to a computer
[Intel Pentium IV processor (2.4 GHz), 1 GB RAM]. The monitor
refresh rate was 100 Hz, allowing stimuli to be displayed with a
frame duration of 10 ms and a resolution of 1,024 � 768.

We used MATLAB software (MathWorks, Natick, MA) with
the psychophysics toolbox (54, 55) to precisely time the stimulus
presentations. In all experiments, the image duration was 20 ms. In
all experiments except the last one (see below), the mask appeared
after a fixed ISI of 30 ms (corresponding to a SOA of 50 ms). In the
last experiment, we randomly interleaved different ISI conditions:
0-ms ISI (SOA � 20 ms), 30-ms ISI (SOA � 50 ms), 60-ms ISI
(SOA � 80 ms), or infinite (i.e., never appeared). The mask
following the picture was a (1/f) random noise mask, generated (for
each trial) by filtering random noise through a Gaussian filter.

The stimuli were presented in the center of the screen (256 �
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256 pixels, �7° � 7° of visual angle, gray-level images). The 1,200
image stimuli (600 animals and 600 distractors) were presented
in random order and divided into 10 blocks of 120 images each.
Participants were asked to respond as fast and as accurately as
possible concerning whether the image contained an animal by
pressing a ‘‘yes’’ or ‘‘no’’ key on a computer keyboard. They were
randomly asked to use their left or right hand for ‘‘yes’’ vs. ‘‘no’’
answers. Each experiment took �30 min to perform.

Categorization by the Model. To train the PFC classification unit
in the model, we used a random splits procedure, which has been
shown to provide a good estimate of the expected error of a
classifier (56). The procedure was as follows.

1. Split the set of 1,200 (animal and non-animal) images into two
halves; denote one half as ‘‘training’’ and the other as ‘‘test.’’

2. Imprint S4 units with specific examples of animal and non-
animal images from the training set of images (25% selected at
random). Like units in lower stages become tuned to patches of
natural images (see SI Text); S4 units become tuned to views of
the target object by storing in their synaptic weights the pattern
of activity of their afferents during a presentation of a particular
exemplar. This finding is consistent with a large body of data that
suggests that the selectivity of neurons in IT depends on visual
experience (see ref. 23 for a review).

3. Train a PFC classification unit on the labeled ‘‘training’’ set of
images. The response y of a classification unit with input weights
c � (c1, . . . , cKS4

), when presented with an input pattern x � (x1,
. . . , xKS4

) from the previous layer (S4 unit j, denoted xj, is tuned
to the jth training example), is given by

y � �
j

cjxj. [3]

The unit response y � R is further binarized (y 	 0) to obtain
a classification label {
1,1}. This supervised learning stage
involves adjusting the synaptic weights c so as to minimize the
overall classification error E on the training set.†† In this
article, we used one of the simplest types of linear classifier
by computing the least-square-fit solution of the regularized
classification error evaluated on the training set‡‡§§:

E � �
i�1

l

\yi � ŷ i\2 � �\c\2, [4]

where yi corresponds to the classification unit response for the
ith training example, ŷi is the true label of the ith training
example, and � is a fixed constant. To solve Eq. 1, we used the
nonbiological MATLAB left division operation for matrices, but
we obtained similar results with a more biologically plausible
stochastic gradient learning approach using weight perturba-
tions modified from ref. 57, i.e., (xi, yi) pairs, where xi denotes the
ith image in the training set and yi is its associated label (animal
or non-animal).

4. Evaluate the performance of the classifier on the ‘‘test’’ set.
We repeated the overall procedure n � 20 times and com-
puted the average model performance. Note that the error
bars for the model in Fig. 3 correspond to the standard errors
computed over these n � 20 random runs.

††The full training set is used to adjust the synaptic weights of the classification unit.

‡‡Other classifiers could be used (a linear SVM gave very similar results). A recent study (9)
demonstrated that a linear classifier can indeed read out with high accuracy and over
extremely short time intervals (a single bin as short as 12.5 ms) object identity, object
category, and other information (such as the position and size of the object) from the
activity of �100 neurons in IT.

§§A single classifier was trained on all four animal and non-animal categories together.
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