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Many experiments have shown that the human visual system makes extensive use of contextual
information for facilitating object search in natural scenes. However, the question of how to formally
model contextual influences is still open. On the basis of a Bayesian framework, the authors present an
original approach of attentional guidance by global scene context. The model comprises 2 parallel
pathways; one pathway computes local features (saliency) and the other computes global (scene-
centered) features. The contextual guidance model of attention combines bottom-up saliency, scene
context, and top-down mechanisms at an early stage of visual processing and predicts the image regions
likely to be fixated by human observers performing natural search tasks in real-world scenes.
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According to feature-integration theory (Treisman & Gelade,
1980), the search for objects requires slow serial scanning because
attention is necessary to integrate low-level features into single
objects. Current computational models of visual attention based on
saliency maps have been inspired by this approach, as it allows a

simple and direct implementation of bottom-up attentional mech-
anisms that are not task specific. Computational models of image
saliency (Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985;
Parkhurst, Law, & Niebur, 2002; Rosenholtz, 1999) provide some
predictions about which regions are likely to attract observers’
attention. These models work best in situations in which the image
itself provides little semantic information and in which no specific
task is driving the observer’s exploration. In real-world images, the
semantic content of the scene, the co-occurrence of objects, and
task constraints have been shown to play a key role in modulating
where attention and eye movements go (Chun & Jiang, 1998; De
Graef, 1992; Eckstein, Drescher, & Shimozaki, in press; Hender-
son, 2003; Loftus & Mackworth, 1978; Neider & Zelinski, 2006;
Noton & Stark, 1971; Oliva, Torralba, Castelhano, & Henderson,
2003; Palmer, 1975; Tsotsos et al., 1995; Yarbus, 1967). Early
work by Biederman, Mezzanotte, and Rabinowitz (1982) demon-
strated that the violation of typical item configuration slows object
detection in a scene (e.g., a sofa floating in the air; see also De
Graef, Christiaens, & d’Ydewalle, 1990; Henderson, Weeks, &
Hollingworth, 1999). Of interest, human observers need not be
explicitly aware of the scene context to benefit from it. Chun,
Jiang, and colleagues (Chun, 2000; Chun & Jiang, 1998, 1999;
Jiang & Wagner, 2004; Olson & Chun, 2002) have shown that
repeated exposure to the same arrangement of random elements
produces a form of learning that they call contextual cuing. When
repeated configurations of distractor elements serve as predictors
of target location, observers are implicitly cued to the position of
the target in subsequent viewing of the repeated displays. Observ-
ers can also be implicitly cued to a target location by global
properties of the image, like color background (Kunar, Flusberg, &
Wolfe, in press) and learned context (Brockmole, Castelhano, &
Henderson, 2006; Brockmole & Henderson, 2006b; Hidalgo-
Sotelo, Oliva, & Torralba, 2005; Oliva, Wolfe, & Arsenio, 2004).
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One common conceptualization of contextual information is
based on exploiting the relationship between co-occurring objects
in real-world environments (Bar, 2004; Biederman, 1995; Daven-
port & Potter, 2004; Friedman, 1979; Henderson, Pollatsek, &
Rayner, 1987). In this article, we discuss an alternative represen-
tation of context that does not require parsing a scene into objects
but instead relies on global statistical properties of the image
(Oliva & Torralba, 2001). The proposed representation provides
the basis for feed-forward processing of visual context that can be
performed in parallel with object processing. Global context can
thus benefit object search mechanisms by modulating the use of
the features provided by local image analysis. In our contextual
guidance model, we show how contextual information can be
integrated prior to the first saccade, thereby reducing the number
of image locations that need to be considered by object-driven
attentional mechanisms.

Recent behavioral and modeling research suggests that early
scene interpretation may be influenced by global image properties
that are computed by processes that do not require selective visual
attention (spatial envelope properties of a scene, Oliva & Torralba,
2001; statistical properties of object sets, Ariely, 2001; Chong &
Treisman, 2003). Behavioral studies have shown that complex
scenes can be identified from a coding of spatial relationships
between components like geons (Biederman, 1995) or low spatial
frequency blobs (Schyns & Oliva, 1994; for a review, see Oliva,
2005). Here we show that the structure of a scene can be repre-
sented by the mean of global image features at a coarse spatial
resolution (Oliva & Torralba, 2001, 2006). This representation is
free of segmentation and object recognition stages but still pro-
vides an efficient shortcut for object detection in the real world.
Task information (searching for a specific object) modifies the

way that contextual features are used to select relevant image
regions.

The contextual guidance model (see Figure 1) combines both
local and global sources of information within the same Bayesian
framework (Torralba, 2003b). Image saliency and global-context
features are computed in parallel, in a feed-forward manner, and
are integrated at an early stage of visual processing (i.e., before
initiating image exploration). Top-down control is represented by
the specific constraints of the search task (looking for a pedestrian,
a painting, or a mug), and it modifies how global-context features
are used to select relevant image regions for exploration.

Model of Object Search and Contextual Guidance

Scene Context Recognition Without Object Recognition

Contextual influences can arise from different sources of visual
information. On the one hand, context can be framed as the
relationship between objects (Bar, 2004; Biederman, 1995; Dav-
enport & Potter, 2004; Friedman, 1979; Henderson et al., 1987).
According to this view, scene context is defined as a combination
of objects that have been associated over time and are capable of
priming each other to facilitate object and scene categorization. To
acquire this type of context, the observer must perceive one or
more diagnostic objects within the scene (e.g., a bed) and use this
knowledge to infer the probable identities and locations of other
objects (e.g., a pillow). Over the past decade, research on change
blindness has shown that in order to perceive the details of an
object, one must attend to it (Henderson & Hollingworth, 1999b,
2003; Hollingworth & Henderson, 2002; Hollingworth, Schrock,
& Henderson, 2001; Rensink, 2000; Rensink, O’Regan, & Clark,
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Figure 1. Contextual guidance model that integrates image saliency and scene priors. The image is analyzed
in two parallel pathways. Both pathways share the first stage in which the image is filtered by a set of
multiscale-oriented filters. The local pathway represents each spatial location independently. This local repre-
sentation is used to compute image saliency and to perform object recognition on the basis of local appearance.
The global pathway represents the entire image holistically by extracting global statistics from the image. This
global representation can be used for scene recognition. In this model, the global pathway is used to provide
information about the expected location of the target in the image.
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1997; Simons & Levin, 1997). In light of these results, object-to-
object context would be utilized via a serial process that first
requires perception of diagnostic objects before inferring associ-
ated objects. In theory, this process could take place within an
initial glance, with attention being able to grasp three to four
objects within a 200-ms window (E. K. Vogel, Woodman, & Luck,
in press; Wolfe, 1998). Contextual influences induced by co-
occurrence of objects have been observed in cognitive neuro-
science studies. Recent work by Bar (2004; Bar & Aminoff, 2003)
demonstrates that specific cortical areas (a subregion of the para-
hippocampal cortex and the retrosplenial cortex) are involved in
the analysis of contextual associations (e.g., a farm and a cow) and
not merely in the analysis of scene layout.

Alternatively, research has shown that scene context can be built
in a holistic fashion, without the recognition of individual objects.
The semantic category of most real-world scenes can be inferred
from their spatial layout only (e.g., an arrangement of basic geo-
metrical forms such as simple geons clusters, Biederman, 1995;
the spatial relationships between regions or blobs of particular size
and aspect ratio, Schyns & Oliva, 1994) or from global scene
properties (Greene & Oliva, 2006). Recent behavioral experiments
have shown that even low-level features, like the spatial distribu-
tion of colored regions (Goffaux et al., 2005; Oliva & Schyns,
2000; Rousselet, Joubert, & Fabre-Thorpe, 2005) or the distribu-
tion of scales and orientations (McCotter, Gosselin, Sowden, &
Schyns, 2005), are correlated with the semantic classes of real-
world scenes. Scene comprehension and more generally recogni-
tion of objects in scenes can occur very quickly, without much
need for attentional resources. This rapid understanding phenom-
enon has been observed under different experimental conditions, in
which the perception of the image is difficult or degraded, like
during rapid sequential visual presentation tasks (Evans & Treis-
man, 2005; Potter, 1976; Potter, Staub, & O’Connor, 2004), very
short presentation time (Kirchner & Thorpe, 2006; Thorpe, Fize, &
Marlot, 1996), backward masking (Bacon-Mace, Mace, Fabre-
Thorpe, & Thorpe, 2005), dual-task conditions (F. F. Li, VanRul-
len, Koch, & Perona, 2002), and blur (Oliva & Schyns, 1997;
Schyns & Oliva, 1994). Cognitive neuroscience research has
shown that these recognition events would occur 150 ms after
image onset (Delorme, Rousselet, Mace, & Fabre-Thorpe, 2003;
Goffaux et al., 2005; Johnson & Olshausen, 2003; Thorpe et al.,
1996). This establishes an upper bound on how fast natural image
recognition can be made by the visual system and suggests that
natural scene recognition can be implemented within a feed-
forward mechanism of information processing. The global features
approach described here may be part of a feed-forward mechanism
of semantic scene analysis (Oliva & Torralba, 2006).

Correspondingly, computational modeling work has shown that
real-world scenes can be interpreted as members of a basic-level
category on the basis of holistic mechanisms, without the need for
segmentation and grouping stages (Fei-Fei & Perona, 2005;
Greene & Oliva, 2006; Oliva & Torralba, 2001; Torralba & Oliva,
2003; J. Vogel & Schiele, in press; Walker Renninger & Malik,
2004). This scene-centered approach is consistent within a global-
to-local image analysis (Navon, 1977) in which the processing of
the global structure and the spatial relationships among compo-
nents precede the analysis of local details. Cognitive neuroscience
studies have acknowledged the possible independence between
processing a whole scene and processing local objects within an

image. The parahippocampal place area is sensitive to the scene
layout and remains unaffected by the visual complexity of the
image (Epstein & Kanwisher, 1998), a virtue of the global feature
coding described in the current study. The parahippocampal place
area is also sensitive to scene processing that does not require
attentional resources (Marois, Yi, & Chun, 2004). Recently, Goh et
al. (2004) showed activation in different brain regions when a
picture of a scene background was processed alone, compared with
when the backgrounds contained a prominent and semantically
consistent object. Whether the two approaches to scene context,
one based on holistic global features and the other one based on
object associations, recruit different brain regions (for reviews, see
Bar, 2004; Epstein, 2005; Kanwisher, 2003) or instead recruit a
similar mechanism processing spatial and conceptual associations
(Bar, 2004) is a challenging question for insights into scene
understanding.

A scene-centered approach of context would not preclude a
parallel object-to-object context, rather it would serve as a feed-
forward pathway of visual processing, describing spatial layout
and conceptual information (e.g., scene category, function), with-
out the need of segmenting the objects. In this article, we provide
a computational implementation of a scene-centered approach to
scene context and show its performance in predicting eye move-
ments during a number of ecological search tasks. In the next
section, we present a contextual model for object search that
incorporates global features (scene-centered context representa-
tion) and local image features (salient regions).

Model of Object Search and Contextual Guidance

We summarize a probabilistic framework of attentional guid-
ance that provides, for each image location, the probability of
target presence by integrating global and local image information
and task constraints. Attentional mechanisms such as image sa-
liency and contextual modulation emerge as a natural consequence
from such a model (Torralba, 2003a, 2003b).

There has been extensive research on the relationship between
eye movements and attention, and it has been well established that
shifts of attention can occur independent of eye movements (for
reviews, see Liversedge & Findlay, 2000; Rayner, 1998). Further-
more, the planning of an eye movement is itself thought to be
preceded by a shift of covert attention to the target location before
the actual movement is deployed (Deubel, Schneider, & Bridge-
man, 1996; Henderson, Pollatsek, & Rayner, 1989; Hoffman &
Subramaniam, 1995; Kowler, Anderson, Dosher, & Blaser, 1995;
Rayner, 1998; Rayner, McConkie, & Ehrlich, 1978; Remington,
1980). However, previous studies have also shown that with nat-
ural scenes and other complex stimuli (such as text), the cost of
moving the eyes to shift attention is less than to shift attention
covertly and led some to posit that studying covert and overt
attention as separate processes in these cases is misguided (Find-
lay, 2004). The model proposed in the current study attempts to
predict the image regions that will be explored by covert and overt
attentional shifts, but performance of the model is evaluated with
overt attention as measured with eye movements.

In the case of a search task in which a person has to look for a
target embedded in a scene, the goal is to identify whether the
target is present or absent and, if present, to indicate where it is
located. An ideal observer will fixate the image locations that have
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the highest probability of containing the target object given the
available image information. Therefore, detection can be formu-
lated as the evaluation of the probability function p(O, X�I), where
I is the set of features extracted from the image. O is a binary
variable where O � 1 denotes target present and O � 0 denotes
target absent in the image. X defines the location of the target in the
image when the target is present (O � 1). When the target is
absent, p�O � 0, X�I��p�O � 0�I�.

In general, this probability will be difficult to evaluate because
of the high dimensionality of the input image I. One common
simplification is to make the assumption that the only features
relevant for evaluating the probability of target presence are the
local image features. Many experimental displays are set up to
verify that assumption (e.g., Wolfe, 1994; Wolfe, Cave, & Franzel,
1989). In the case of search in real-world scenes, local information
is not the only information available, and scene-based context
information can have a very important role when the fixation is far
from the location of the target. Before attention is directed to a
particular location, the nonattended object corresponds to a shape-
less bundle of basic features insufficient for confident detection
(Wolfe & Bennett, 1997; Wolfe, Oliva, Butcher, & Arsenio, 2002).
The role of the scene context is to provide information about past
search experiences in similar environments and strategies that
were successful in finding the target. In our model, we use two sets
of image features: local and global features. Local features char-
acterize a localized region of the image; global features character-
ize the entire image. Target detection is then achieved by estimat-
ing p(O, X�L, G). This is the probability of the presence of the
target object at the location X � (x, y) given the set of local
measurements L(X) and a set of global features G. The location X
is defined in an image-centered coordinate frame. In our imple-
mentation, the image coordinates are normalized so that x is in the
range [0, 1]. The choice of units or the image resolution does not
affect the model predictions. The global features G provide the
context representation. Using Bayes’s rule, we can split the target
presence probability function into a set of components that can be
interpreted in terms of different mechanisms that contribute to the
guidance of attention (Torralba, 2003b):

p�O � 1, X�L, G�

�
1

p�L�G�
p�L�O � 1, X, G�p�X�O � 1, G�p�O � 1�G�. (1)

1. The first term, 1/p(L�G), does not depend on the target and
therefore is a pure bottom-up factor. It provides a measure of how
unlikely it is to find a set of local measurements within the image.
This term fits the definition of saliency (Itti et al., 1998; Koch &
Ullman, 1985; Z. Li, 2002; Treisman & Gelade, 1980) and
emerges naturally from the probabilistic framework (Rosenholtz,
1999; Torralba, 2003a, 2003b).

2. The second term, p(L�O � 1, X, G), represents the top-down
knowledge of the target appearance and how it contributes to the
search. Regions of the image with features unlikely to belong to
the target object are vetoed and regions with attended features are
enhanced (Cave, 1999; Rao, Zelinsky, Hayhoe, & Ballard, 2002;
Wolfe, 1994).

3. The third term, p(X�O � 1, G), provides context-based priors
on the location of the target. It relies on past experience to learn the
relationship between target locations and global scene features

(Biederman et al., 1982; Brockmole et al., 2006; Brockmole &
Henderson, 2006a, 2006b; Chun, 2000; Chun & Jiang, 1998, 1999;
Eckstein et al., in press; Hidalgo-Sotelo et al., 2005; Kunar et al.,
in press; Oliva et al., 2004; Olson & Chun, 2002; Torralba, 2003a,
2003b).

4. The fourth term, p(O � 1�G), provides the probability of
presence of the target in the scene. If this probability is very small,
then object search need not be initiated. In the images selected for
our experiments, this probability can be assumed to be constant,
and therefore we have ignored it in the present study. In a general
setup, this distribution can be learned from training data (Torralba,
2003a, 2003b).

The model given by Equation 1 does not specify the temporal
dynamics for the evaluation of each term. Our hypothesis is that
both saliency and global contextual factors are evaluated very
quickly, before the first saccade is deployed. However, the factor
that accounts for target appearance might need longer integration
time, particularly when the features that define the object are
complex combinations of low-level image primitives (like feature
conjunctions of orientations and colors, shapes, etc.) that require
attention to be focused on a local image region (we assume also
that in most cases, the objects are relatively small). This is cer-
tainly true for most real-world objects in real-world scenes, be-
cause no simple feature is likely to distinguish targets from non-
targets. In this article, we consider the contribution of saliency and
contextual scene priors, excluding any contribution from the ap-
pearance of the target. Therefore, the final model used to predict
fixation locations, integrating bottom-up saliency and task depen-
dent scene priors, is described by the equation

S�X� �
1

p�L�G�
p�X�O � 1, G�. (2)

The function S(X) is a contextually modulated saliency map that
is constrained by the task (searching for the target). This model is
summarized in Figure 1. In the local pathway, each location in the
visual field is represented by a vector of features. It could be a
collection of templates (e.g., midlevel complexity patches; Ull-
man, Vidal-Naquet, & Sali, 2002) or a vector composed of the
output of wavelets at different orientations and scales (Itti et al.,
1998; Riesenhuber & Poggio, 1999; Serre, Wolf, & Poggio, 2005).
The local pathway (object centered) refers principally to
bottom-up saliency models of attention (Itti et al., 1998) and
appearance-based object recognition (Rao et al., 2002). The global
pathway (scene centered) is responsible for both the representation
of the scene—the basis for scene recognition—and the contextual
modulation of image saliency and detection response. In this
model, the gist of the scene (here represented by the global features
G) is acquired during the first few hundred milliseconds after the
image onset (while the eyes are still looking at the location of the
initial fixation point). Finding the target requires scene explora-
tion. Eye movements are needed, as the target can be small (people
in a street scene, a mug in a kitchen scene, etc.). The locations to
which the first fixations are directed will be strongly driven by the
scene gist when it provides expectations about the location of the
target. In the next subsections, we summarize how the features and
each factor of Equation 2 are evaluated.
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Local Features and Saliency

Bottom-up models of attention (Itti et al., 1998) provide a
measure of the saliency of each location in the image computed
from various low-level features (contrast, color, orientation, tex-
ture, motion). In the present model, saliency is defined in terms of
the probability of finding a set of local features within the image
as derived from the Bayesian framework. Local image features are
salient when they are statistically distinguishable from the back-
ground (Rosenholtz, 1999; Torralba, 2003b). The hypothesis un-
derlying these models is that locations with different properties
from their neighboring regions are considered more informative
and therefore will initially attract attention and eye movements. In
the task of an object search, this interpretation of saliency follows
the intuition that repetitive image features are likely to belong to
the background whereas rare image features are more likely to be
diagnostic in detecting objects of interest (see Figure 2).

In our implementation of saliency, each color channel (we use
the raw RGB color channels) is passed through a bank of filters
(we use the steerable pyramid; Simoncelli & Freeman, 1995) tuned
to six orientations and four scales (with one octave separation
between scales), which provide a total of 6 � 4 � 3 � 72 features
at each location. Each image location is represented by a vector of
features (L) that contains the output of the multiscale-oriented

filters for each color band. Computing saliency requires estimating
the distribution of local features in the image. In order to model
this distribution, we used a multivariate power-exponential distri-
bution, which is more general than a Gaussian distribution and
accounts for the long tails of the distributions typical of natural
images (Olshausen & Field, 1996):

log p�L� � log k � 1/ 2��L � ��t�	1�L � ��
�, (3)

where k is a normalization constant and � and � are the mean and
covariance matrix of the local features. The exponent � (with � �
1) accounts for the long tail of the distribution. When � � 1, the
distribution is a multivariate Gaussian. We used maximum likeli-
hood to fit the distribution parameters �, �, and �. For �, we
obtained values in the range of [0.01, 0.1] for the images used in
the eye movement experiments reported below. This distribution
can also be fitted by constraining � to be diagonal and then
allowing the exponent � to be different for each component of the
vector of local features L. We found no differences between these
two approximations when using this probability for predicting
fixation points. We approximated the conditional distribution
p�L�G�  p�L���I�, ��I�, ��I�� by fitting the power-exponential
distribution using the features computed at the current image I.
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Chair
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Car
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Firehydrant

Stop sign

Traffic light

Percentage of times the most salient
location is inside the target

Figure 2. Examples of image saliency. The graphs on the right show a bar for each object corresponding to the
percentage of times that the most salient location in the image was inside the target object. These percentages
are averages computed over a database with hundreds of images for each object class (Russell et al., 2005). Long
bars correspond to salient objects. Traffic lights have the highest saliency; in 65% of the scenes analyzed they
were the most salient object. People are less salient than many other objects in outdoor scenes: Pedestrians were
the most salient object in only 10% of the scene images. Bicycles were never the most salient point in any of
the images analyzed. Tables and chairs are among the most salient objects in indoor scenes.
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The computation of saliency does not take into account the
target appearance, and so it will be a weak predictor of the target
location for many objects. Figure 2 shows the saliency measured in
several indoor and outdoor scenes along with the relative saliency
of several objects computed over a large database of annotated
images (the number of images used for each object varies from 50
to 800). To provide a better local measure of saliency, we first
raised the inverse probability to the power of � � 0.05, and then
we smoothed the result with a Gaussian filter (with a half-
amplitude spatial width of � � 1° of visual angle). The exponent
� was selected according to the description provided in Equation 7
(see below), and the smoothing filter was selected in order to
maximize the saliency of people in street scenes (we found the
parameters to be insensitive to the target class for the object
categories used in this study). The size � of the smoothing filter is
related to the average size of the target in the scenes and to the
dispersion of eye fixations around a location of interest. We found
that the parameters � and � did not differ significantly when
optimizing the model for different objects. Therefore we fixed the
parameters and used them for different targets (see Figure 2). This
measure of saliency provided the baseline model to which we
compared the results of our model, which integrates contextual
information to predict the regions fixated by observers.

Global Image Features

The statistical regularities of bandpass filter outputs (similar to
receptive fields of cells found in the visual cortex; Olshausen &
Field, 1996) have been shown to be correlated with high-level
properties of real-world scenes (Torralba & Oliva, 2003). For
instance, the degree of perspective or the mean depth of the space
that a scene image subtends can be estimated by a configuration of
low-level image features (Torralba & Oliva, 2002). Evidence from
the psychophysics literature suggests that our visual system is able
to compute a global statistical summary of the image in a prese-
lective stage of visual processing or, at least, with minimal atten-
tional resources (mean orientation; Parkes, Lund, Angelucci, Solo-

mon, & Morgan, 2001; mean of set of objects; Ariely, 2001;
Chong & Treisman, 2003). By pooling together the activity of
local low-level feature detectors across large regions of the visual
field, we can build a holistic and low-dimensional representation
of the structure of a scene that does not require explicit segmen-
tation of image regions and objects and therefore requires low
amounts of computational (or attentional) resources. This suggests
that a reliable scene representation can be built, in a feed-forward
manner, from the same low-level features used for local neural
representations of an image (receptive fields of early visual areas;
Hubel & Wiesel, 1968).

As in Oliva and Torralba (2001), we adopted a representation of
the image context using a set of global features that provides a
holistic description of the spatial organization of dominant scales
and orientations in the image. The number of global features that
can be computed is quite high. The most effective global features
will be those that reflect the global structures of the visual world.
Several methods of image analysis can be used to learn a suitable
basis of global features (Fei-Fei & Perona, 2005; Oliva & Tor-
ralba, 2001; Vailaya, Jain, & Zhang, 1998; J. Vogel & Schiele, in
press) that capture the statistical regularities of natural images. In
the modeling presented here, we consider only global features that
summarize the statistics of the outputs of receptive fields measur-
ing orientations and spatial frequencies of image components (see
Figure 3).

By pooling together the activity of local low-level feature de-
tectors across large regions of the visual field, we can build a
holistic and low-dimensional representation of the scene context
that is independent of the amount of clutter in the image. The
global features are computed starting with the same low-level
features as the ones used for computing the local features. The
luminance channel (computed as the average of the RGB channels)
is decomposed with a steerable pyramid (Simoncelli & Freeman,
1995) with six orientations and four spatial frequency scales. The
output of each filter is subsampled by first taking the magnitude of
the response and then computing the local average over 4 � 4

Magnitude of multiscale 
oriented filter outputs

G
Sampled 

filter
outputs

orientation

sc
al

e

Figure 3. Computation of global features. The luminance channel is decomposed by using a steerable pyramid
with six orientations and four scales. The output of each filter is subsampled by first taking the magnitude and
then computing the local average response over 4 � 4 nonoverlapping windows. The sampled filter outputs are
shown here by using a polar representation at each location (the polar plots encode scale of the filter in the radius
and orientation of tuning in the angle. The brightness corresponds to the output magnitude). The final
representation is obtained by projecting the subsampled filter outputs (which represents a vector of 384
dimensions) into its first 64 principal components.
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nonoverlapping spatial windows. Each image is then represented
by a vector of N � N � K � 4 � 4 � 24 � 384 values (where K
is the number of different orientations and scales; N � N is the
number of samples used to encode, in low resolution, the output
magnitude of each filter). The final vector of global features (G) is
obtained by projecting the subsampled filter outputs into its first 64
principal components (PC), obtained by applying PC analysis to a
collection of 22,000 images (the image collection includes scenes
from a full range of views, from close-up to panoramic, for both
man-made and natural environments). Figure 4 shows the first PCs
of the output magnitude of simple cells for the luminance channel
for a spatial resolution of two cycles per image (this resolution
refers to the resolution at which the magnitude of each filter output
is reduced before applying the PC analysis; 2 cycles/image corre-
sponds to N � N � 4 � 4). Each polar plot in Figure 4 (low spatial
frequencies in the center) illustrates how the scales and orienta-
tions are weighted at each spatial location in order to calculate
global features. Each of the 24 PCs shown in Figure 4 is tuned to
a particular spatial configuration of scales and orientations in the
image. For instance, the second PC responds strongly to images
with more texture in the upper half than on the bottom half. This
global feature will represent the structure of a natural landscape
well, for instance a landscape scene with a road or snow at the
bottom and a lush forest at the top. Higher order PCs have an
increasing degree of complexity (Oliva & Torralba, 2006).

In order to illustrate the amount of information preserved by the
global features, Figure 5 shows noise images that are coerced to
have the same global features as the target image. This constraint
is imposed by an iterative algorithm. The synthetic images are
initialized to be white noise. At each iteration, the noise is decom-

posed by the bank of multiscale-oriented filters, and their outputs
are modified locally to match the global features of the target
image. This procedure is similar to the one used in texture syn-
thesis (Portilla & Simoncelli, 2000). The resulting representation
provides a coarse encoding of the edges and textures in the original
scene picture. Despite its shapeless representation, the “sketch” of
the image is meaningful enough to support an inference of the
probable category of the scene (Oliva & Torralba, 2002).

From a computational stance, estimating the overall structure or
shape of a scene as a combination of global features is a critical
advantage, as it provides a mechanism of visual understanding that
is independent of an image’s visual complexity. Any mechanisms
parsing the image into regions would be dependent on the amount
of clutter and occlusions between objects: The more objects to be
parsed, the more computational resources needed.

Learning Context and the Layered Structure of Natural
Images

The role of the global features in this model is to activate the
locations most likely to contain the target object, thereby reducing
the saliency of image regions not relevant for the task. The use of
context requires a learning stage in which the system learns the
association of the scene with the target location. When searching
for people, for example, the system learns the correlation between
global scene features and the location of people in the image. Such
an association is represented in our model by the joint density
function p(X, G�O � 1). This function will be different for each
object category.

The relationship between global scene features and target loca-
tion is nonlinear. We model this relationship by approximating the
joint density with a mixture of Gaussians. The mixture of Gauss-
ians allows for an intuitive description of the behavior of the model
as using a set of scene prototypes. Each prototype is associated
with one distribution of target locations. When the input image has
a set of global features that are similar to one of the prototypes, the
expected location of the target will be close to the location of the
target associated with the prototype. In a general situation, the
expected target location will be a weighted mixture of the target
locations for all the prototypes, with the weights depending on how
close the current image is to one of the prototypes. The joint
density is written as

p�X, G�O � 1� � �
n�1

M

P�n�p�X�n�p�G�n�

(4)� �
n�1

M

�nN�X; �n, �n�N�G; �n, Yn�,

where N denotes the Gaussian distribution and M is the number of
clusters (prototypes). X is the target location and G is the vector of
global features of the scene picture. The first factor, P(n) � �n, is
the weight assigned to the scene prototype n. The weights are

normalized such that ¥
n�1

M

�n � 1. The second factor, p(X�n), is the

distribution of target locations for the prototype n. This distribution
is a Gaussian with mean �n and covariance �n. The third factor,

Figure 4. The figure shows the first 24 principal components (PCs) of the
output magnitude of a set of multiscale-oriented filters tuned to six orien-
tations and four scales at 4 � 4 spatial locations. Each subimage shows, in
a polar plot (as in Figure 3), how the scale and orientations are weighted
at each spatial location. The first PC (shown in the top left panel) has
uniform weights. The second component weights positively energy in the
upper half of the image and negatively in the bottom half (across all
orientations and scales). The third component opposes horizontal (posi-
tively) and vertical (negatively) edges anywhere in the image. The fourth
component opposes low spatial frequencies against high spatial frequencies
anywhere in the image. High-order components have more complex inter-
actions between space and spectral content.
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p(G�n), is the distribution of global features for prototype n and is
a Gaussian with mean �n and covariance Yn. The vector �n is the
vector of global features for the scene prototype n.

There is an important improvement in performance when using
cluster-weighted regression instead of the mixture of Gaussians of
Equation 4. This requires just a small modification to Equation 4
by replacing p(X�n) with p(X�G,n). In this case, we allow for the
distribution of target locations for each cluster to depend on the
global features. The goal of this model is to learn the local
mapping between variations in the target location and small vari-
ations of the global features with respect to the prototype. The
simplest model is obtained by assuming that in the neighborhood
of a prototype, the relationship between global features and target
location can be approximated by a linear function: p�X�G, n�
� N�X; �n � WnG, �n�, where the new parameter Wn is the
regression matrix. This is the model that we use in the rest of the
article. From the joint distribution we can compute the conditional
density function required to compute the contextually modulated
saliency (Equation 2):

p�X�O � 1, G� �
p�X, G�O � 1�

�
n�1

M

P�n�p�G�n�

. (5)

The conditional expected location of the target Xt, for an image
with global features G, is the weighted sum of M linear regressors:

Xt �

�
n�1

M

��n � WnG�wn

�
n�1

M

wn

, (6)

with weights wn � �nN�G; �n, Yn�. Note that Xt has a nonlinear
dependency with respect to the global image features.

Global context can predict the vertical location of an object
class, but it is hard to predict the horizontal location of the target
in a large scene. The reason is that the horizontal location of an
object is essentially unconstrained by global context. Instances of
one object category are likely to be within a horizontal section of
the image. This is generally true for scene pictures of a large space
taken by a human standing on the ground. The layered structure of
images of large spaces is illustrated in Figure 6. In order to provide
an upper bound on how well the global context can constrain the
location of a target in the scene, we can study how well the
location of a target is constrained given that we know the location
of another target of the same object class within the same image.
From a large database of annotated scenes (Russell, Torralba,
Murphy, & Freeman, 2005), we estimated the joint distribution
p(X1, X2), where X1 and X2 are the locations of two object in-
stances from the same class. We approximated this density by a
full covariance Gaussian distribution. We then compared two
distributions: the marginal p(X1) and the conditional p(X1�X2). The
distribution p(X1) denotes the variability of target locations within
the database. The images are cropped so that this distribution is
close to uniform. The dashed ellipses in Figure 6 show the covari-
ance matrix for the location distribution of several indoor and
outdoor objects. The conditional distribution p(X1�X2) informs
about how the uncertainty on the target location X1 decreases when
we know the location X2, another instance of the same class. The
solid ellipse in Figure 6 shows the covariance of the conditional
Gaussian. The variance across the vertical axis is significantly
reduced for almost all of the objects, which implies that the vertical
location can be estimated quite accurately. However, the variance
across the horizontal axis is almost identical to the original vari-
ance, showing that the horizontal locations of two target instances
are largely independent. In fact, objects can move freely along a
horizontal line with relatively few restrictions. In particular, this is
the case for pedestrians in street pictures. Therefore, for most
object classes we can approximate p�X�O � 1, G� � p�x�O
�1, G)p�y�O � 1, G� and set p�x�O � 1, G� to be uniform and

Figure 5. This figure shows that the global features capture the dominant textural features of the overall image
and their coarse spatial layout. Top row: Original images. Bottom row: Noise images coerced to have the same
global features (N � 64) as the original image.

773OBJECT SEARCH IN REAL-WORLD SCENES



just learn p�y�O � 1, G�. This drastically reduces the amount of
training data required to learn the relationship between global
features and target location.

The parameters of the model are obtained by using a training
data set and the EM algorithm for fitting Gaussian mixtures
(Dempster, Laird, & Rubin, 1977). We trained the model to predict
the locations of three different objects: people in street scenes,
paintings in indoor scenes, and mugs in indoor scenes. For the
people detection task, the training set consisted of 279 high-resolution
pictures of urban environments in the Boston area. For the mug and
painting detection tasks, the training set was composed, respectively,
of 341 and 339 images of indoor scenes. The images were labeled in
order to provide the location of people, mugs, and paintings.

From each image in the training data set, we generated 20
images, of size 320 � 240 pixels, by randomly cropping the
original image in order to create a larger training set with a
uniform distribution of target locations. The number of prototypes
(M) was selected by cross-validation and depended on the task and
scene variability. For the three objects (people, paintings, and
mugs), results obtained with M � 4 were satisfactory, with no
improvement added with the use of more prototypes. Figure 7
shows a set of images that have similar features to the prototypes
selected by the learning stage for solving the task of people
detection in urban scenes.

Finally, the combination of saliency and scene priors requires
weighting the two factors so that the product is not constantly
dominated by one factor. This is a common problem when com-
bining distributions with high-dimensional inputs that were inde-
pendently trained. One common solution is to apply an exponent to
the local evidence:

S�X� � p�L�G�	� p�X�O � 1, G�. (7)

The parameter � is set by sequentially searching for the best �
on a validation set. The optimization was achieved by using people
as the target object. However, we found this parameter had a small
effect when the target object was changed. The parameter � was
then fixed for all the experiments. The best value for � is 0.05
(performance is similar for � in the range [0.01, 0.3]). A small
value for � has the effect of down-weighting the importance of
saliency with respect to contextual information. Note that this
exponent has no effect on the performance of each independent
module and affects only the performance of the final model. We
smoothed the map S(X) using a Gaussian window with a half-
amplitude spatial width of 1° of visual angle. This provided an
estimation of the probability mass across image regions of 1° of
visual angle. Only two parameters have been tuned to combine
saliency and the scene prior: the width of the blur filter (which
specifies over which region the saliency will be integrated) and the
exponent (to weight the mixture of saliency and scene priors).
Although we optimized those parameters in a first instance to
maximize the saliency of people in outdoor scenes, we found that
the optimal parameters do not change from object to object. Those
parameters are fixed across the three target search tasks reported
below. Therefore, they are not object specific.

Figure 8 depicts the system’s performance on a novel image.
Two models are computed, one using salient regions alone and one
using the contextual guidance model. The red dots indicate the real
location of the target objects (pedestrians) in the image. The bar
plot indicates the percentage of target objects that are within the
attended region (set to be 20% of the image size) when using

Figure 6. The layered structure of large-space natural images. As we look at a scene corresponding to a large
space (e.g., a street, an office, a living room), the objects in the scene seem to be organized along horizontal
layers. For instance, in a street scene, we have the road at the bottom; in the center we have cars and pedestrians.
Above this layer we have trees and buildings, and at the top the sky. If we move our eyes horizontally, we
encounter objects of similar categories. On the other hand, if we move our eyes vertically, we encounter objects
of quite different categories. This figure shows, by collecting statistics from a large database of annotated
images, that objects of the same category are clustered along a similar vertical position while their horizontal
location is mostly unconstrained. Each plot shows the covariance of the distributions p(X1) (dashed line) and
p(X1�X2) (solid line) for eight object categories. X1 and X2 are the locations of two object instances from the same
class. The dots represent X1 	 E[X1�X2], the location of each object relative to its expected location given that
we know the location of another instance of the same object class in the same image. For each plot, the center
corresponds to the coordinates (0, 0).
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low-level saliency alone, contextual priors alone, or a combination
of both factors. In each of the three cases, performance is clearly
above chance (20%), with the saliency model performing at 50%.
Performance reaches 83% when both saliency and scene priors are
integrated. These results show that the use of contextual informa-
tion in a search task provides a significant benefit over models that
use bottom-up saliency alone for predicting the location of the
target.

Eye Movement Experiment

A search experiment was designed to test the assumptions made
by the model by having three groups of participants count, respec-
tively, the number people, paintings, and mugs in scene images.
The three tasks were selected to correspond to different contextual
constraints encountered in the real world: People were defined as
pedestrians, who are naturally found on ground surfaces; paintings

are located on horizontal wall surfaces; and mugs are located on
horizontal support surfaces. The recording of the eye movements
during the counting search task served as a method of validating
the proposed contextual guidance model as well as a point of
comparison between the model and a purely saliency-based model.

Method

Participants. A total of 24 Michigan State University undergraduates
participated in the experiment (8 participants per search task) and received
either credit toward an introductory psychology course or $7 as compen-
sation. All participants had normal vision.

Apparatus. Eyetracking was performed by a Generation 5.5 SRI Dual
Purkinje Image Eyetracker (Fourward Optical Technologies, Inc., Buena
Vista, VA), sampling at 1000 Hz. The eyetracker recorded the position and
duration of eye movements during the search and the input of the partic-
ipant’s response. Full-color photographs were displayed on an NEC Mul-
tisync P750 monitor (refresh rate � 143 Hz; NEC Corporation, Japan).
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Figure 8. Comparison of performance on a detection task between a saliency model and the contextual
guidance model. From left to right are the (a) input image, (b) image regions selected by a saliency map, and
(c) image regions selected by the contextual guidance model. The red dots indicate the location of two search
targets (people). The outputs of the two models (saliency and context) are thresholded and encoded with a color
code. The graph with circles indicates how the coding of the different image areas was done: The yellow region
corresponds to the 10% of image pixels with higher saliency. The plot on the right shows the detection rate for
pedestrians. The detection rate corresponds to the number of targets within a region 20% of the size of the image.
Each bar corresponds (from right to left) to the detection rates of a system using saliency alone, using context
priors alone, and using contextual guidance of saliency (integrating both context priors and bottom-up saliency).
Error bars represent standard error of the mean. This result illustrates the power of a vision system that does not
incorporate a model of the target. Informative regions are selected before processing the target.

Figure 7. Scene prototypes selected for the people search task in urban scenes. The top row shows the images
from the training set that are the closest to the four prototypes found by the learning algorithm. The bottom row
shows the expected location of pedestrians associated with each prototype. The selected regions are aligned with
the location of the horizon line.
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Stimuli. The images used in the eye movements experiments consisted
of two sets of 36 digitized full-color photographs taken from various urban
locations (for the people search task) and various indoor scenes (for the
mug and painting search tasks). For the people search task, the 36 images
included 14 scenes without people and 22 scenes containing one to six
people. A representative sample of the types of scenes used is shown in
Figure 13 (people could be found on roads, pavements, grass, stairs,
sidewalks, benches, bridges, etc). The same set of 36 images of indoor
scenes was used for the mug and painting tasks, as both objects are
consistent in a variety of indoor categories (cf. Figure 14). Paintings were
found hanging on walls, and mugs were located on horizontal support-type
surfaces (like kitchen islands and counters; desks; and dining, coffee, and
end tables). There were 17 images without paintings and 19 containing one
to six paintings, and there were 18 images without mugs and 18 images
containing between one and six mugs. Mean target sizes and standard
deviations (in parentheses) were 1.05% (1.24%) of the image size for
people, 7.3% (7.63%) for paintings, and 0.5% (0.4%) for mugs. The set of
images used for the eyetracking experiments was independent of the set
used for adjusting the parameters and training the model. Note that we
trained one model per task, independently of each other. All images
subtended 15.8° � 11.9° of visual angle.

Procedure. Three groups of 8 observers each participated in the peo-
ple, painting, and mug search tasks. They were seated at a viewing distance
of 1.13 m from the monitor. The right eye was tracked, but viewing was
binocular. After the participants centered their fixation, a scene appeared
and observers counted the number of people present (Group 1), counted the
number of paintings present (Group 2), or counted the number of mugs
(Group 3). A scene was displayed until the participant responded or for a
maximum of 10 s. Once the participant pressed the response button, the
search was terminated and the scene was replaced with a number array. The
number array consisted of eight digits (0–7) presented in two rows.
Participants made their responses by fixating the selected digit and pressing
a response button. Responses were scored as the digit closest to the last
fixation on the screen at the time the button was pressed. The eyetracker
was used to record the position and duration of eye movements during the
search task and response to the number array. The experimenter initiated
each trial when calibration was deemed satisfactory, which was determined
as �4 pixels from each calibration point. Saccades were defined by a
combination of velocity and distance criteria (Henderson, McClure, Pierce,
& Schrock, 1997). Eye movements smaller than the predetermined criteria
were considered drift within a fixation. Individual fixation durations were
computed as elapsed time between saccades. The position of each fixation
was computed from the average position of each data point within the
fixation and weighted by the duration of each of those data points. The
experiment lasted about 40 min.

Results

Eye movements evaluation. The task of counting target ob-
jects within pictures is similar to an exhaustive visual search
task (Sternberg, 1966). In our design, each scene could contain
up to six targets, and target size was not prespecified and
varied among the stimuli set. Under these circumstances, we
expected participants to exhaustively search each scene, regard-
less of the true number of targets present. As expected, reaction
times and fixation counts did not differ between target present
and target absent conditions (cf. Table 1 and detailed analysis
below).

On average, participants ended the search before the 10 s time
limit for 97% of the people trials, 85% of the paintings trials, and
66% of the mug trials. Accordingly, participants’ responses times
were higher in the mug search than in the other two conditions (cf.
Table 1), a result which is not surprising in light of the very small
size of mug targets in the scenes and the diversity of their loca-
tions.

As the task consisted of counting the target objects and not
merely indicating their presence, we did not expect participants to
terminate the search earlier on target present than target absent
trials. Indeed, responses times did not differ between target present
and absent trials (cf. Table 1).

The number of fixations summarized in Table 1 is consistent
with mean reaction times: Participants made an average of 22
fixations in the mug condition, 15 in the painting condition, and
13 in the people condition. Rayner (1998) reported that fixation
durations averaged about 275 ms for visual search tasks and 330
ms during scene perception (see also Kayser, Nielsen, & Logo-
thetis, 2006). Fixation durations in the counting task were
slightly shorter, overall averaging 236 ms (240 ms for present
trials and 232 ms for absent trials, not significantly different,
F � 1). These values are similar to the mean fixation duration
of 247 ms observed in an object search task in line drawings of
real-world scenes using the same eyetracker and data analysis
criteria (Henderson et al., 1999).

The average saccade amplitude (measured in degrees of visual
angle) was negatively correlated with fixation count across tasks:
More fixations were accompanied by shorter saccade amplitudes
in the mug search task than in the other tasks. Visual search tasks

Table 1
Summary of the Eye Movement Patterns for the Three Search Tasks

Search task target

Reaction
time (ms)

Fixation
duration (ms)

Fixation
count

Saccade
length (°)

M SD M SD M SD M SD

People
Absent 4,546 605 299 37 13.9 2.0 3.1 0.4
Present 4,360 957 237 41 13.0 3.0 2.6 0.4

Paintings
Absent 3,974 1,097 228 26 15.7 4.3 3.3 0.4
Present 3,817 778 236 22 14.9 4.7 3.2 0.4

Mugs
Absent 6,444 2,176 239 22 21.8 6.9 2.3 0.3
Present 6,775 1,966 247 18 21.8 6.5 2.8 0.4
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have been found to exhibit more long-amplitude saccades than free
viewing of natural images (on average, about 3° for search and 4°
for scene perception; Rayner, 1998; see Table 1; see also Tatler,
Baddeley, & Vincent, 2006). The counting search tasks resulted in
an averaged saccade length of 3°.

An analysis of variance (ANOVA) comparing the effects of the
three tasks and target status (present or absent) on saccade length
showed that there was a main effect of search condition, F(2,
21) � 1,588, p � .001; no effect of target presence (F � 1); and
a significant interaction between the search task condition and
target presence, F(2, 21) � 30.2, p � .001. In the people condition,
saccade amplitude was larger in the target absent than in the target
present condition (3.08° vs. 2.57°), t(7) � 4.5, p � .01, but the
reverse was true for the mug condition (2.79° vs. 2.28°), t(7) �
6.6, p � .01. No effect on saccade amplitude was found in the
painting search.

Consistency across participants. In this section, we evaluate
how consistent the fixation positions, which are compared below
with the models, were across participants. Analysis of the eye
movement patterns across participants showed that the fixations
were strongly constrained by the search task and the scene context.

To evaluate quantitatively the consistency across participants,
we studied how well the fixations of 7 participants can be used to
predict the locations fixated by the 8th participant. To illustrate,
Figure 9A shows the fixations of 7 participants superimposed on a
scene for the people search task. From each subset of 7 partici-
pants, we created a mixture of Gaussians by putting a Gaussian of
1° of visual angle centered on each fixation. This mixture defines
the distribution

p�xi
t � x� �

1

M � 1�
j �i

1

Tj
�
t�1

Tj

N�x; xj
t, �2�, (8)

where xj
t denotes the location of the fixation number t for partici-

pant j. The notation j �i denotes the sum over all the participants
excluding participant i. M is the number of participants and Tj is
the number of fixations of participant j. The obtained distribution
p�xi

t � x� is an approximation for the distribution over fixated
locations. Note that the ordering of the fixations is not important
for the analysis here (therefore, this distribution ignores the tem-
poral ordering of the fixations).
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Figure 9. Analysis of the regularity of fixations. The first row illustrates how the consistency among participants
was computed and also how well the location of the target predicted the image regions fixated. A: Example of an
image and all the fixations of 7 participants for the people search task. B: To analyze consistency among participants,
we iteratively defined a region using 7 participants to predict the fixations of the 8th participant. C: For images with
target present, we defined a region using the support of the target. For the three search tasks, we evaluated the
consistency among participants and also how well the region occupied by the target explained the locations fixated
by the participants: people (D), painting (E), and mug (F) search tasks. Error bars represent standard error of the mean.
In all the cases, the consistency among participants was high from the first fixation. In all the cases, the consistency
among participants was higher than the predictions made by the target location.
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To evaluate consistency across participants in a way that is
consistent with the evaluation of model performance (see next
section), we thresholded the density p�xi

t � x� to select an image
region with the highest probability of being fixated that had an area
of 20% of the image size (see Figure 9B). The consistency across
participants is determined by the percentage of fixations of the ith
participant that fell within the selected image region (chance �
20%). The final result is obtained by averaging the consistency
obtained for all participants and images. The results are summa-
rized in Figure 9. First, the results show that participants are very
consistent with one another in the fixated locations in the target
present conditions (see Figures 9D–9F). Considering the five first
fixations, participants have a very high level of consistency in both
the target absent and target present cases for the people search
(over 90% in both cases). In the two other search conditions, the
consistency across participants is significantly higher when the
target is present than absent: painting, t(34) � 2.9, p � .01; mug,
t(34) � 3.0, p � .01.

For the target present images, we can also evaluate how well the
location of the target can predict image regions that will be fixated.
We defined the target-selected region using the target mask (for all
the images, the targets were previously segmented) and blurring
the binary mask with a Gaussian of 1° of width at half amplitude
(see Figure 9C). As before, we thresholded the blurred mask in
order to select an image region with an area equal to 20% of the
image size. Then, we counted the number of fixations that fell
within the target region. The results are shown in Figures 9D–9F.
Surprisingly, the region defined by the target only marginally
predicted participants’ fixations (on average, 76% for people, 48%
for painting, and 63% for mug conditions, all significantly lower
than the consistency across participants). Therefore, using the
fixations of a set of participants provides more accurate predictions
for the image locations to be fixated by an additional participant
than does using only information about the target location (for the
three objects studied). This suggests that the locations fixated by
observers in target present images are driven not only by the target
location or the target features but also by other image components.
The next section compares the predictions generated by the models
on the basis of two image components: saliency and global-context
features.

Comparison of human observers and models. To assess the
respective roles of saliency and scene context in guiding eye
movements, we compared a model using bottom-up saliency alone

(see Figure 10) and the contextual guidance model (see Figure 11)
that integrates saliency and scene information (Equation 7) with
the fixations of participants for the three search tasks. The output
of both models is a map in which each location is assigned a value
that indicates how relevant that location is with respect to the task.

As in the previous results section, we apply a threshold to the
outputs of the models in order to define predicted regions with a
predefined size that allows for comparing the different algorithms.
The threshold is set so that the selected image region occupies a
fixed proportion of the image size (set to 20% for the results shown
in Figure 12). The efficiency of each model is determined by the
percentage of human fixations that fall within the predicted region.
Figure 12 summarizes the results obtained in the search experi-
ment for the three target objects and compares two instances of
the model (see Figure 1): a model using saliency alone (local
pathway) and the contextual guidance model (full model) integrat-
ing both sources of information (Equation 7). We also plotted the
consistency across participants from Figure 9 on the same graph,
as it provides an upper bound on the performance that can be
obtained.

First, the two models performed well above chance level (20%)
for target present and absent conditions in their predictions of
locations of human fixations. The differences shown in Figure 12
are statistically significant: For the target present case, an ANOVA
considering the first five fixations for the three groups and the two
models showed an effect of models, F(1, 55)�28.7, p � .0001,
with the full model better predicting human fixations than the
saliency only model (respectively, 73% and 58%). A significant
main effect of groups, F(2, 55) � 12.4, p � .0001, was mostly
driven by differences in saliency model performance. The same
trend was found for the target absent conditions.

As our models are expected to be more representative of the
early stages of the search, before decision factors start playing a
dominant role in the scan pattern, we considered first the first two
fixations for the statistical analysis. For the people search task, the
graphs in Figure 12 clearly show that the full model performed
better than the saliency model: t(20) � 4.3, p � .001, for target
present, and t(14) � 3.6, p � .01, for target absent. The full
model’s advantage remains for the painting search task—t(18) �
4.2, p � .001, for target present, and t(16) � 2.7, p � .02, for
target absent—and the mug search task—for target present,
t(17) � 2.8, p � .02, and for target absent, t(17) � 2.2, p � .05.

-A- -B-

people searchParticipant's fixations painting search mug search

Figure 10. People (A) and mug and painting (B) search tasks. For the two example images, we show the
regions predicted by the saliency model, with the first 2 locations fixated by 8 participants superimposed. A
model based only on image saliency does not provide accurate predictions for the fixated locations, and it is not
able to explain changes in search when the target object changes.
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When considering the first five fixations for the analysis for
the people search task, the graphs in Figure 12 clearly indicate
that the full model performed better than the saliency only
model for both target present, t(20) � 3.6, p � .01, and target
absent conditions, t(14) � 6.3, p � .01. This remains true for
the painting and the mug search tasks—respectively, t(18) �
2.7, p � .02, and t(17) � 3.5, p � .01— but for target present
only.

Interpretation

The comparison of the contextual guidance model and the
saliency-based model with participants’ consistency provides a
very rich set of results. The contextual model was able to consis-

tently predict the locations of the first few fixations in the three
tasks, despite the fact that some target objects were very small
(e.g., people and mugs were representing only 1% of the image
pixels) and that object location varied greatly. The model also
predicted fixation locations when the target object was absent.
Participants had a tendency to start fixating image locations that
contained salient local features within the region selected by global
contextual features. This effect was strongest in the people task
search (see Figure 11A and Figure 13), showing that participants
kept exploring the regions predicted by the contextual guidance
model. Pedestrians were relatively small targets, embedded in
large scenes with clutter, forcing observers to scrutinize multiple
ground surface locations.

Task: painting search

Task: mug search

Task: people search

Saliency

Saliency

-A-

-B-

Task: people search

Task: painting search

Task: mug search

Figure 11. The full model presented here incorporated scene priors to modulate the salient regions taking into
account the expected location of the target given its scene context. A: In the people search task, the two factors
are combined, resulting in a saliency map modulated by the task. For evaluating the performance of the models,
we compared the locations fixated by 8 participants with a thresholded map. B: Here, it is illustrated how the
task modulates the salient regions. The same image was used on two tasks: painting and mug searches. In this
example, the results show that the scene context is able to predict which regions will be fixated and how the task
produces a change of the fixations.
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In the painting and mug conditions, participants also started by
exploring the image regions that are salient and the most contex-
tually relevant locations but then continued exploring the entirety
of the scene after the second or third fixation, resulting in lower
performance of the contextual model as search progresses. Small
objects like mugs can in practice be placed almost anywhere in a

room, so it is possible that participants continued exploring regions
of the scene that, despite not being strongly associated with typical
positions of mugs, are not unlikely to contain the target (e.g., on a
chair, a stack of books). Participants were very consistent with
each other for the first five fixations (cf. Figure 9), suggesting that
they were indeed looking at the same regions. The mug condi-

Figure 12. This figure summarizes the results obtained in the search experiment for the three target objects
(people, paintings, and mugs). For each plot, the vertical axis is the performance of each model measured by
counting the number of fixations that fall within the 20% of the image with the highest score given by each
model. The horizontal axis corresponds to the fixation number (with the central fixation removed). Error bars
represent standard error of the mean.
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tion showed another interesting pattern (see Figure 12E): The saliency
model performed almost as well as the full model in both target
present and absent conditions. This suggests that the saliency model
performance in this task was not due to the saliency of the mugs

themselves but instead was driven by other salient objects spatially
associated with the mugs (cf. table, chair in Figure 2). Figures 13 and
14 qualitatively illustrate the performance of the models: Both figures
show a subset of the images used in the experiment and the regions
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Fixations 1-2 Fixations 3-4 Fixations 1-2 Fixations 3-4

Figure 13. Comparison between regions selected by a model using saliency alone and by the full model for the
people search task. Each panel shows on the top left the input image and on the bottom left the image with the
first four fixations for all 8 participants superimposed. The top row shows the regions predicted by saliency alone
(the images show Fixations 1–2 and 3–4 for the 8 participants). The bottom row shows the regions predicted by
the full model that integrates context and saliency.
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selected by a model based on saliency alone and the full model,
integrating contextual information.

Of interest, the best predictor of any participant’s fixations in
the search counting tasks was the locations fixated by other

participants and not the location of the target object per se (see
Figure 9). This effect was found for the three search tasks and
suggests that the task and the scene context impose stronger
constraints on fixation locations than the actual position of the
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Mug search Painting search Mug search Painting search

Saliency
Full m

odel

Saliency
Full m

odel

Mug search Painting search Mug search Painting search

Saliency
Full m

odel

Saliency
Full m

odel

Mug search Painting search Mug search Painting search

Saliency
Full m

odel

Saliency
Full m

odel

Mug search Painting search Mug search Painting search

Saliency
Full m

odel

Saliency
Full m

odel
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Figure 14. Comparison between regions selected by a model using saliency alone and by the full model for the mug
and painting search tasks. The images show Fixations 1–2 for the 8 participants on the mug search task (center) and
painting search task (right). The top row shows the regions predicted by saliency alone, and therefore, the predicted
regions do not change with the task. The bottom row shows the regions predicted by the full model that integrates
context and saliency. The full model selects regions that are relevant for the task and are a better predictor of eye
fixations than saliency alone.
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target. It is possible that the requirement of the counting task
had amplified the consistency between fixations, focusing overt
attention on all the regions that were potentially associated with
the target. Despite its outstanding performance over a saliency
model, the global-context model does not perform as well as the
participants themselves, suggesting room for improvement in
modeling additional sources of context (e.g., object-to-object
local associations).

Discussion

This article proposes a computational instantiation of a Bayesian
model of attention, demonstrating the mandatory role of scene
context for search tasks in real-world images. Attentional mecha-
nisms driven by image saliency and contextual guidance emerge as
a natural consequence of the probabilistic framework, providing an
integrated and formal scheme into which local and global features
can be combined automatically to guide subsequent object detec-
tion and recognition.

Our approach suggests that a robust holistic representation of
scene context can be computed from the same ensemble of low-
level features used to construct other low-level image representa-
tions (e.g., junctions, surfaces) and can be integrated with saliency
computation early enough to guide the deployment of attention and
first eye movements toward likely locations of target objects. From
an algorithmic point of view, early contextual control of the focus
of attention is important as it avoids expending computational
resources in analyzing spatial locations with low probability of
containing the target on the basis of prior experience. In the
contextual guidance model, task-related information modulates the
selection of the image regions that are relevant. We have demon-
strated the effectiveness of the contextual guidance model for
predicting the locations of the first few fixations in three different
search tasks, performed on various types of scene categories (ur-
ban environments, variety of rooms) and for various object size
conditions.

Behavioral research has shown that contextual information
plays an important role in object detection (Biederman et al., 1982;
Boyce & Pollatsek, 1992; Oliva et al., 2003; Palmer, 1975).
Changes in real-world scenes are noticed more quickly for objects
and regions of interest (Rensink et al., 1997), and scene context
can influence the detection of a change (Hollingworth & Hender-
son, 2000), suggesting a preferential deployment of attention to
these parts of a scene (see also Land & Hayhoe, 2001). Experi-
mental results suggest that the selection of these regions is gov-
erned not merely by low-level saliency but also by scene semantics
(Henderson & Hollingworth, 1999a). Visual search is facilitated
when there is a correlation across different trials between the
contextual configuration of the scene display and the target loca-
tion (Brockmole & Henderson, 2006b; Chun & Jiang, 1998, 1999;
Eckstein et al., in press; Hidalgo-Sotelo et al., 2005; Jiang &
Wagner, 2004; Oliva et al., 2004; Olson & Chun, 2002). In a
similar vein, several studies support the idea that scene semantics
can be available early in the chain of information processing
(Potter, 1976) and suggest that scene recognition may not require
object recognition as a first step (Fei-Fei & Perona, 2005; Greene
& Oliva, 2006; McCotter et al., 2005; Oliva & Torralba, 2001;
Schyns & Oliva, 1994). The present approach proposes a feed-
forward processing of context (see Figure 1) that is independent of

object-related processing mechanisms. The global scene represen-
tation delivers contextual information in parallel with the process-
ing of local features, providing a formal realization of an efficient
feed-forward mechanism for the guidance of attention. An early
impact of scene context is also compatible with the reverse hier-
archy theory (Hochstein & Ahissar, 2002) in which properties that
are abstracted late in visual processing (such as object shapes,
categorical scene description) rapidly feed back into early stages
and constrain local processing.

It is important to note that our scene-centered approach of
context modeling is complementary and not opposed to an object-
centered approach of context. The advantage of using a scene-
centered approach is that contextual influences occur indepen-
dently of the level of visual complexity of the image (a drawback
of a contextual definition based on identification of one or more
objects) and are robust at many levels of the ease of target
detection (e.g., when the target is very small or camouflaged). The
global-to-local scheme of visual processing could conceivably be
applied to the mechanism of object contextual influences (De
Graef, 1992; Henderson et al., 1987; Palmer, 1975), advocating for
a two-stage temporal development of contextual effects: Global
scene features would account for an initial impact of context,
quickly constraining some local analysis, while object-to-object
association would build in a more progressive way, depending on
which objects were initially segmented. A more local-based ap-
proach to context is consistent with recent developments in con-
textual cuing tasks showing that local associations and spatially
grouped clusters of objects can also facilitate localization of the
target (Jiang & Wagner, 2004; Olson & Chun, 2002), though
global influences seem to have more effect in contextual cuing of
real-world scenes (Brockmole et al., 2006). Both levels of contex-
tual analysis could theoretically occur within a single fixation, and
their relative contributions for determining search performance are
a challenging question to further models and theories of visual
context.

The inclusion of object-driven representations and their interac-
tion with attentional mechanisms is beyond the scope of this
article. Simplified experimental setups (Wolfe, 1994) and natural
but simplified worlds (Rao et al., 2002) have begun to show how
a model of the target object influences the allocation of attention.
In large part, however, identifying the relevant features of object
categories remains an open issue (Serre et al., 2005; Torralba,
Murphy, & Freeman, 2004; Ullman et al., 2002). Our claim in this
article is that when the target is very small (the people and the
mugs occupy a region that has a size of 1% of the size of the image
on average), the target’s appearance will play a secondary role in
guiding eye movements, for at least the initial few fixations. This
assumption is supported by the finding that the location of the
target itself did not predict well the locations of search fixations
(cf. Figure 9). If target appearance drove fixations, then fixations
would be expected to be attracted to the targets when they were
present rather than to fall on contextually expected locations. The
current study emphasizes how much of eye movement location can
be explained when a target model is not implemented.

Our study provides the lower bound of the expected perfor-
mance that can be achieved by a computational model of context,
when the target is small, embedded in high level clutter, or even
not present at all. In Murphy, Torralba, and Freeman (2004),
global and local features (including a model of the target) were
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used to detect objects in cluttered scene backgrounds. The inclu-
sion of global features helped to improve the performance of the
final object detection. However, use of these models to predict
human fixations would require that false alarms of such models be
similar to the errors made by participants. This is still beyond the
current state of computer vision for general object recognition. In
Torralba, Murphy, and Freeman (2005) local objects were used to
focus computations into image regions likely to contain a target
object. This strategy is very efficient only when trying to detect
target objects that are strongly linked to other objects (e.g., a
keyboard and a computer screen). The system learns to first detect
large objects defined by simple features (e.g., a computer screen)
that provide strong contextual information in order to facilitate
localization of small targets (e.g., a computer mouse). Objects that
are not within expected locations defined by context may still be
detected but would require strong local evidence to produce con-
fident detections.

In this article, we demonstrated the robustness of global con-
textual information in predicting observers’ eye movements in a
search counting task of cluttered real-world scenes. The feed-
forward scheme that computes these global features successfully
provides the relevant contextual information to direct attention
very early in the visual processing stream.
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