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Appendix

In this supplementary material, we share our code and
provide additional insights and experimental results that
were not included in the main paper due to space con-
straints. In Section A we describe the implementation
code for generating SyViC and the code for the proposed
finetuning approach on SyViC. In Section B, we analyze
the performance of recently open-sourced VL models on
VL-Checklist [18] and show they have low performance,
demonstrating the need for our improvements. In Section C,
we provide additional results on Winoground [13] using Cy-
CLIP [7] (excluded from the main text for space purposes).
Section D demonstrates how we can improve BLIP [8] us-
ing SyViC. In Section E, we combine our contributions with
those of concurrent work of [6] and demonstrate that our
approach for improving VLC using synthetic data is or-
thogonal / complementary to the text-augmentation based
methods. Section F provides more dataset details, describ-
ing how the metadata from each synthesized scene is used
to generate a caption for each image in SyViC. In Sec-
tion G, we explore combinations of our metadata-driven
grammar-based caption generation with paraphrasing using
openly available large language models. Section H provides
”SyViC - number of models and number of samples” abla-
tion excluded from the main paper due to lack of space.
Finally, in Section I we provide some randomly sampled
examples from SyViC.

A. Code

Our code for both SyViC data synthesis and the pro-
posed finetuning approach is included in our project page:
https://synthetic-vic.github.io/

*Equal contribution. Project page: https://synthetic-vic.github.io/
†Work partially done while interning at the MIT-IBM Watson AI Lab.

B. Expanding VL-Checklist [18] analysis to
most recent VL models

As promised in the footnote in the introduction we have
evaluated the very recently released open-source VL mod-
els, namely: METER (CVPR 22) [5], X-VLM (ICML 22)
[17], and VLMO (NeurIPS 22) [1] on the most extensive
VLC understanding benchmark of VL-Checklist [18] ob-
serving average performance of 56.8%, 58.9%, and 54.6%
respectively. As noted in the introduction, this relatively
low VLC understanding performance (below CLIP [11]) of
the newest (open) VL models illustrates once again the very
much needed improvement in this aspect. Consequently,
it also underlines the importance of SyViC and the pro-
posed finetuning approach for administering some of this
improvement and highlighting the future potential of our ap-
proach and synthetic data in general for the VL modeling.
We additionally explore the very recent BLIP [8] model and
how it could be improved using SyViC and our approach in
Section D.

C. Winoground Results for CyCLIP [7]
As promised in the main paper (lines 555-556), we in-

clude the Winoground [13] results of CyCLIP [7] not in-
cluded in the main paper for lack of space. The results
are included in Table A.1 and, compared to the CyCLIP
baseline, demonstrate stable improvements of up to 1.17%
group score for syn-CyCLIP finetuned on SyViC using our
proposed approach.

D. Improving BLIP [8] using SyViC
BLIP is a recently released VL model achieving bet-

ter out-of-the-box performance on VL-Checklist [18] and
Winoground [13] compared to CLIP [11]. In Table A.2 we
show how using our proposed SyViC dataset and the fine-
tuning approach applied to BLIP, significant additional per-
formance gains (1.48% on VL-Checklist and up to 4.67%
on Winoground group score) can be achieved. BLIP is de-



Winoground Winoground†

Text Image Group Text Image Group

CyCLIP 28.50 9.50 7.25 32.16 11.11 8.19

syn-CyCLIP 30.00 (1.5) 10.75 (1.25) 8.25 (1.0) 30.99 (-1.17) 12.87 (1.76) 9.36 (1.17)

Table A.1. Winoground [13] performance of syn-CyCLIP – finetuned on SyViC. † ‘clean’ (no-tag) subset of valid Winoground samples
from [4]

signed and optimized for VL understanding and generation
[8], and has a relatively low zero-shot out-of-the-box per-
formance compared to CLIP (e.g., we observed an over 7%
drop in zero-shot comparing baseline BLIP to CLIP and
similar drop for syn-BLIP compared to CLIP). In more de-
tail, we employ the retrieval flow of BLIP starting from
ViT/B and CapFilt-L base model and use it as the BLIP
baseline in Table A.2. We finetune BLIP on SyViC follow-
ing the complete proposed recipe detailed in Sec. 3.2 of the
main paper. We add rank-16 LoRa adapters to both BLIP
encoders and the decoder (cross-attention layers in the text
encoder). We fine-tune for two epochs with a learning rate
of 5e-6 using an Adam optimizer with a weight decay factor
of 0.05 [9].

E. Exploring a combination with text augmen-
tation methods

As discussed in lines 108-112 in the Introduction of
the main paper, concurrent works [6, 16] propose an or-
thogonal approach of improving VLC understanding per-
formance via using text augmentation while training on ad-
ditional real VL paired image+text data. These works use
language tools to teach a model the importance of non-
noun words by manipulating them (replacing words with
incorrect alternatives in the text captions of real image+text
pairs) and adding the resulting texts to the same batch. In
order to show that our proposed approach of improving the
VLC understanding performance of VL models using tar-
geted demonstration on both text and image side via gener-
ating synthetic data (our SyViC dataset) is truly orthogonal
and complementary to the text augmentation methods, we
have conducted the following experiment whose results are
summarized in Table A.3. Specifically, we used [6] code,
kindly shared to us by the authors, to combine our SyViC
finetuning (as described in Section 3.2 of the main paper)
with the LAION [12] experiment of [6] using their text aug-
mentation method both for the real data captions as well as
for our SyViC synthetic data captions. More specifically,
we finetune (using the method described in Section 3.2 in
the main paper, also including [6] negative text augmenta-
tions and their additional losses for the negatives as detailed
in [6]) on combined batches containing both LAION [12]
text+image pairs and SyViC text+image pairs. The base
model is CLIP [11] both for [6] and syn-[6]. As we can
see in A.3, syn-[6] significantly (up to 12.26% on Relations

and 8.46% on average) improves the base [6] performance
on VL-Checklist (trained on the same LAION data with-
out SyViC) and is roughly matching [6] performance on the
ARO and zero-shot evaluations.

F. Metadata-driven caption text synthesis,
more details

This section describes how the metadata from each syn-
thesized scene is used to generate a caption for each image
in SyViC. We outline a rule-based mechanism to determin-
istically generate dense captions given:

1. List of the objects present in the scene, each with its
corresponding name and world coordinates.

2. List of humanoids present in the scene, each with its
world coordinates, clothing identifier, and a textual de-
scription of the action it performs.

3. Segmented image that has a label for each pixel corre-
sponding to the object or humanoid it belongs to.

4. Scene identifier that maps to a textual description of
the scene.

We annotate a list of 115 clothing textures from the
Multi-Garment [2] and SURREAL [14]. Clothing annota-
tions include a list of textual descriptions such as the colors
of the clothes, the hair/beard style, as well as any features
that stand out such as logos, tattoos, and accessories. Addi-
tionally, we use the original scene descriptions provided by
ThreeDWorld’s scene library.

To generate the description of the objects in the image,
we use the (3D) world positions of the objects to create po-
sitional relations between them. For objects that are hor-
izontally aligned, we generate a description of which ob-
ject is to the left or right of the other by comparing their
corresponding pixels in the segmentation image. Further-
more, we generate a description of which object is in front
of the other by translating the world coordinates into cam-
era coordinates and comparing their z-coordinates. Unique
identifiers for names are used to as placeholders to obtain
those relationships, and object names are filled in once all
positional relations are established, using indefinite articles
when necessary. This process is applied to every pair of
objects present in the scene.



VL Checklist Winoground Winoground†

Relation Attribute Average Text Image Group Text Image

BLIP 68.45 73.11 70.78 38.00 18.25 14.50 43.86 25.15 21.06

syn-BLIP 70.18 (+1.73) 75.34 (+2.23) 72.76 (+1.48) 43.25 (+5.25) 19.75 (+1.5) 16.75 (+2.25) 52.63 (+8.77) 29.82 (+4.67) 25.73 (+4.67)

Table A.2. Performance of syn-BLIP – finetuned on SyViC and evaluated on VL-Checklist and Winoground. † ‘clean’ (no-tag) subset of
valid Winoground samples from [4]. Gains and losses are highlighted in green and red respectively.

VL Checklist ARO Zero-Short
Relation Attribute Average VG-Rel. VG-Att. Flickr30k COCO Average (21 tasks)

CLIP 63.57 67.51 65.54 58.84 63.19 47.20 59.46 57.17 56.07
[6] 66.05 69.64 67.85 80.64 72.81 92.82 87.67 83.48 56.71

syn-CLIP 69.39 (+5.82) 70.37 (+2.86) 69.88 (+4.34) 71.40 (+12.56) 66.94 (+3.75) 59.06 (+11.86) 70.96 (+11.5) 67.09 (+9.9) 55.27 (-0.8)
syn-[6] 78.31 (+12.26) 74.31 (+7.67) 76.31 (+8.46) 80.79 (+0.15) 72.37 (-0.44) 92.44 (-0.38) 87.19 (-0.48) 83.20 (-0.28) 54.57 (-2.14)

Table A.3. Demonstrating that text augmentation on real paired VL data training is orthogonal/complementary to our approach. Comparing
[6] performance finetuned on LAION with syn-[6] performance finetuned on LAION + SyViC using a combination of our approach in
Section 3.2 of the main paper with [6]’s negatives text augmentations and additional negative losses (added from [6] original code kindly
shared with us by the authors of [6]). The base model is CLIP [11] both for [6] and syn-[6]. Results are evaluated on VL-Checklist [18]
and ARO [16]. Gains and losses are highlighted in green and red respectively. syn-[6] is comparable on ARO (with 0.28% difference)
and significantly improving on VL-Checklist (with 8.46% average improvement), while having only a small decrease on the zero-shot
evaluation, only 2.14% w.r.t. [6] and even smaller 1.5% compared to base CLIP model.

Furthermore, we generate descriptions of humans while
referring to them using ordinal numbers. In particular, for
each human present in the scene, we retrieve its action de-
scription and place it in a sentence (e.g. ”The {first} person
{walks forward}”. Additionally, we retrieve the list of tex-
tual descriptions associated with the human’s clothing, if
exist. We consider each text as a separate sentence.

Finally, we compile a list of sentences containing a cap-
tion prefix, an enumeration of the objects, the pairwise po-
sitional relations between objects, a scene description, and
action and clothing descriptions for each human. We con-
catenate the sentences together to get a full dense caption
of the image. A simplified pseudo-code for generating a
caption is shown below:

Listing 1. General Code for Caption Generation
def sample p rompt ( o b j e c t s , seg image , scene name ) :

s t a t e m e n t s = [ ” Th i s s c e n e c o n t a i n s ” ]

# O b j e c t s
o b j e c t s s t a t e m e n t = ” ”
f o r o b j in o b j e c t s :

a r t i c l e = g e t a r t i c l e ( o b j . ob j name [ 0 ] )
o b j e c t s s t a t e m e n t += a r t i c l e + f ” {o b j . ob j name } , ”

o b j e c t s s t a t e m e n t += f ” and { l e n ( humans )} humans . ”
s t a t e m e n t s . append ( o b j e c t s s t a t e m e n t )

# Scene s t a t e m e n t
s c e n e s t a t e m e n t = ” They a r e i n ”
s c e n e a r t i c l e = g e t a r t i c l e ( scene name )
s c e n e d e s c r i p t i o n = g e t d e s c r i p t i o n ( s c e n e d e s c r i p t i o n )
s c e n e s t a t e m e n t += s c e n e a r t i c l e + s c e n e d e s c r i p t i o n
s t a t e m e n t s . append ( s c e n e s t a t e m e n t )

# P o s i t i o n a l r e l a t i o n s
r e l a t i o n s = [ ]
n = l e n ( l e n ( o b j e c t s ) )
f o r i in range ( n ) :

f o r j in range ( i + 1 , n ) :
l e f t , r i g h t = g e t l e f t r i g h t ( seg image , i , j )
f r o n t , back = g e t f r o n t b a c k ( i , j )
r e l a t i o n s . e x t e n d ( [

l e f t + ” i s t o t h e l e f t o f ” + r i g h t ,
r i g h t + ” i s t o t h e r i g h t o f ” + l e f t ,

] )
r e l a t i o n s . e x t e n d ( [

f r o n t + ” i s i n f r o n t o f ” + back ,
back + ” i s be h i nd ” + f r o n t ,

] )
s h u f f l e ( r e l a t i o n s )
s t a t e m e n t s . e x t e n d ( r e l a t i o n s )

# C l o t h i n g and a c t i o n
f o r h in humans :

# A c t i o n
s a c t i o n = f ” The {h . name} {h . a c t i o n } . ”
s t a t e m e n t s . append ( s a c t i o n )

# C l o t h i n g
f o r s in h . c l o t h e :

s c l o t h e = f ” The {h . name} {s . s t r i p ( ) } . ”
s t a t e m e n t s . append ( s c l o t h e )

re turn ” ” . j o i n ( s t a t e m e n t s ) . s t r i p ( )

Evidently, dense captions tend to be way too descriptive
and hence noisy to be used fully in VL training. There-
fore, we add a sampling option where statements are sam-
pled with certain probabilities following their weights. For
example, instead of mentioning all pairwise positional re-
lations, this option allows sampling a number of sentences
from the positional relations category.



G. LLM-Based Caption Paraphrasing
We additionally experiment with using the rule-based

system to guide the use of large language models for
caption generation / paraphrasing. Specifically, we adapt
the deterministically-generated caption (as detailed in Sec-
tion F) into a prompt for instruction-based text completion
by replacing the prefix ”This scene contains” (in the syn-
thesized captions) to ”Please describe a scene containing”
and adding a suffix for text completion: ”In this scene, we
can see”. We use the adapted texts as prompts for language
models and generate text completions. We limit the gener-
ated texts to 150 tokens and use caption split averaging, as
described in Section 3.2 in the main paper. We experiment
with the Bloomz 7.1B [10] and Flan-T5 XXL [3] through
Huggingface [15].

Table A.4 shows the performance of syn-CLIP trained
using different caption generation mechanisms. We do not
observe any significant performance gains when using the
captions generated by openly avaialble language models
that we tried over the rule-based system. This is indeed ex-
pected, as the captions generated by current open language
models tend to repeat much of the content in the prompt,
often correcting verb tenses or adding appropriate punctua-
tion marks, which don’t contribute to the semantic richness
of the caption.

VL-Checklist
Relation Attribute Average

CLIP 63.57 67.51 65.54

syn-CLIP with Rule-Based 69.39 70.37 69.88
syn-CLIP with Bloomz 69.66 69.69 69.68
syn-CLIP with Flan-T5 68.48 71.14 69.81

Table A.4. VL-Checklist [18] performance on variants of syn-
CLIP fine-tuned on SyViC with captions generated using the rule-
based system described in section 2 or using language models as
described in section 3.

However, we remark that additional work on using
LLMs for caption generation could investigate more pow-
erful language models, or the use of visual grounding for
caption generation as an additional information source, to
yield better paraphrasing / captions.

H. Exploration into Synthetic Data Diversity
As promised in Ablations Section 4.4 of the main paper

(lines 740-741 in ”SyViC - number of models and number
of samples”) we include the effect of the number of syn-
thetic samples and the number of object models used for
SyViC generation analysis in Figure A.1. These ablations
were not included in the main paper due to lack of space. As
we can see the performance is improving consistently, both
with adding more synthetic images (Fig. A.1a) and with
adding more 3D models used for synthesis (Fig. A.1b).

Figure A.1. Exploration into Synthetic Data Diversity. (a) effect
of adding more synthetic samples to SyViC; (b) effect of adding
more 3D object models to SyViC. Comparing base CLIP and syn-
CLIP performances on VL-Checklist and ARO benchmarks.



I. Some Qualitative Examples with Synthetic
Humans

In this section, we first showcase qualitative improve-
ment in the compositional capabilities of CLIP after finetun-
ing on SyViC using our proposed approach via GradCAM
in Figure A.2. Next, we show textured SMPL samples in
Figure A.3.

1) there is a table 
below someone 
2) there is someone 
below a table

1) there is a table 
below someone 
2) there is someone 
below a table

1) there is a table 
below someone 
2) there is someone 
below a table

1) there is a table 
below someone 
2) there is someone 
below a table

syn-CLIPCLIP

“someone”“a table” “a table” “someone”

Figure A.2. GradCAM on a Winoground sample. left - a CLIP
model attending incorrectly to table regions for both a table
and someone text queries, making a mistake in prediction (red
text). right - our syn-CLIP model correctly attends to the same
making no mistakes in prediction with respect to the given inputs.
Best viewed in color.

Male Prefab + SURREAL + Multi-Garment Female Prefab + SURREAL + Multi-Garment

Figure A.3. Digital humans. We show male and female samples of
Unity Prefabs containing SMPL templates, a set of 514 reusable
3D object assets available in SyViC. We add colliders to each
model to allow interactions with other objects.

Finally, we showcase some visual examples from SyViC
along with the dense captions we generate describing hu-
man actions and detailed human-object interactions and rel-
ative position descriptions in the following pages.



This scene contains a box, and one human. They are in a castle 
ruin with old stones. The box is to the left of the human. The box 
is in front of the human. The human rotate jump. The human is 
male. The human wears a black t-shirt and dark blue jeans.

This scene contains a cat, a car tire, and one human. They are 
in an abandoned shell of a factory with a grey floor that is 
partially tiled with yellow tiles. The cat is to the right of the car 
tire. The human is behind the cat. The human is to the right of 
the car tire. The car tire is in front of the cat. The human stand. 
The human has black pants on. The human is wearing a black 
long-sleeve shirt with an orange logo. The human is male. The 
human has curly blue and black hair.



This scene contains a basket, a suitcase, and one human. They 
are in a room with a red tiled floor and white walls. The suitcase 
is in front of the human. The suitcase is to the right of the 
human. The basket is to the left of the suitcase. The suitcase is 
in front of the basket. The basket is to the left of the human. 
The human hand up high jump. The human is wearing an 
olivine beanie on the head. The human is male. The human has 
a long beard. The human wears a purple jacket, jeans pants, 
and brown shoes.

This scene contains a window, a table, a car tire, and two 
humans. They are in a street with grey floor, green plants on 
the side, and houses around. The car tire is in front of the third 
human. The first human is behind the table. The car tire is to 
the left of the table. The car tire is behind the table. The 
window is to the left of the first human. The car tire is to the 
left of the first human. The window is behind the first human. 
The second human is to the right of the table. The table is in 
front of the second human. The second human is to the right of 
the car tire. The car tire is behind the first human. The window 
is behind the table. The window is to the left of the second 
human. The window is to the left of the table. The window is 
behind the second human. The second human is in front of the 
car tire. The second human body actions. The second human 
wears a white t-shirt and blue jeans with a black belt. The 
second human has short hair and a short beard. The second 
human is male. The first human dance. The first human is male. 
The first human has black hair. The first human wears a white t-
shirt and blue jeans. 



This scene contains a shirt, a stool, a fire hydrant, and two 
humans. They are in a room with blue floor and white walls. The 
shirt is behind the stool. The shirt is behind the second human. 
The shirt is to the right of the second human. The stool is to the 
left of the shirt. The second human is to the left of the first 
human. The first human is to the right of the fire hydrant. The 
second human is in front of the fire hydrant. The first human is in 
front of the shirt. The first human is in front of the fire hydrant. 
The stool is in front of the first human. The second human is to 
the left of the fire hydrant. The fire hydrant is behind the stool. 
The first human is to the right of the stool. The second human is 
in front of the stool. The stool is to the left of the fire hydrant. 
The first human is behind the second human. The second human 
dribble basketball. The second human wears a green football 
jersey and blue jeans pants. The second human has dark brown 
hair. The second human is male. The first human move 
backwards. The first human is dressed in a white shirt and dark 
blue jeans pants. The first human is male. The first human has a 
shaved beard and is wearing a brown beret.

This scene contains two children and two humans. They are in a 
room with a red tiled floor and white walls. The second human 
is in front of the first human. The first human is behind the 
second human. The first human one side leg walk and search. 
The second human has a light brown sweater on. The second 
human is male. The second human is standing. The second 
human is male. The second human is wearing a grey sweater 
and dark blue jeans. The second human has black hair. The 
second human has dark grey shoes. The first human ballet 
dance. The first human has white boots. The first human has 
black hair. The first human wears a black t-shirt and grey pants. 
The first human is male.



This scene contains a gift wrapping, a water faucet, and one 
human. They are in a room with a red tiled floor and white 
walls. The gift wrapping is behind the water faucet. The human 
is in front of the gift wrapping. The human is to the right of the 
gift wrapping. The water faucet is behind the human. The 
water faucet is to the right of the gift wrapping. The human 
sleepwalk. The human is wearing a dark grey t-shirt and black 
sports shorts. The human has short blonde hair. The human is 
male.

This scene contains a loudspeaker, a hat, a dog, a gas cooker, a gas 
cooker, a table, and one human. They are in a room with a red tiled 
floor and white walls. The hat is to the right of the dog. The gas cooker 
is to the right of the gas cooker. The human is to the left of the gas 
cooker. The loudspeaker is to the left of the hat. The loudspeaker is 
behind the gas cooker. The dog is behind the gas cooker. The gas cooker 
is in front of the loudspeaker. The gas cooker is in front of the gas 
cooker. The hat is to the right of the human. The hat is in front of the 
gas cooker. The gas cooker is to the left of the human. The dog is 
behind the hat. The loudspeaker is behind the table. The table is in 
front of the gas cooker. The gas cooker is to the right of the dog. The 
human is in front of the dog. The gas cooker is behind the human. The 
table is to the right of the loudspeaker. The dog is to the right of the 
loudspeaker. The gas cooker is to the left of the dog. The table is in 
front of the dog. The table is to the left of the gas cooker. The table is to 
the left of the hat. The hat is in front of the gas cooker. The human is in 
front of the loudspeaker. The human is in front of the gas cooker. The 
gas cooker is to the left of the table. The hat is in front of the 
loudspeaker. The loudspeaker is to the left of the human. The 
loudspeaker is behind the dog. The gas cooker is to the right of the 
loudspeaker. The gas cooker is behind the table. The human is behind 
the table. The hat is to the right of the gas cooker. The table is in front 
of the hat. The human hand up high jump. The human has a pair of 
green and white shoes. The human is wearing a black hoodie and dark 
blue jeans pants. The human is female. The human has her head 
covered by a beige head scarf.
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