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Abstract

■ Animacy and real-world size are properties that describe any
object and thus bring basic order into our perception of the
visual world. Here, we investigated how the human brain pro-
cesses real-world size and animacy. For this, we applied rep-
resentational similarity to fMRI and MEG data to yield a view
of brain activity with high spatial and temporal resolutions, re-
spectively. Analysis of fMRI data revealed that a distributed and
partly overlapping set of cortical regions extending from occip-
ital to ventral and medial temporal cortex represented animacy
and real-world size. Within this set, parahippocampal cortex
stood out as the region representing animacy and size stronger
than most other regions. Further analysis of the detailed repre-
sentational format revealed differences among regions involved
in processing animacy. Analysis of MEG data revealed over-
lapping temporal dynamics of animacy and real-world size pro-

cessing starting at around 150 msec and provided the first
neuromagnetic signature of real-world object size processing.
Finally, to investigate the neural dynamics of size and animacy
processing simultaneously in space and time, we combined
MEG and fMRI with a novel extension of MEG–fMRI fusion by
representational similarity. This analysis revealed partly over-
lapping and distributed spatiotemporal dynamics, with para-
hippocampal cortex singled out as a region that represented
size and animacy persistently when other regions did not.
Furthermore, the analysis highlighted the role of early visual cor-
tex in representing real-world size. A control analysis revealed
that the neural dynamics of processing animacy and size were
distinct from the neural dynamics of processing low-level visual
features. Together, our results provide a detailed spatiotemporal
view of animacy and size processing in the human brain. ■

INTRODUCTION

Object properties that are universally applicable to any
object are of primary importance to our understanding
of the visual world by providing basic ordering and cate-
gorization to our perceptions. Animacy and real-world
size are two such universal properties that are pertinent
to perception and of high behavioral relevance (Konkle &
Oliva, 2011; Chao, Haxby, & Martin, 1999). Every object
has a physical size, from small scales, such as a strawberry
we can pick up with our fingers, to large scales, such as a
building that we can use as a landmark (Konkle & Oliva,
2011, 2012; Mullally & Maguire, 2011). Similarly, every
object is either animate or inanimate (Shutts, Markson,
& Spelke, 2009). Animacy and real-world size are inde-
pendent properties of each other, in that animate objects
can range from small to large and so can inanimate
objects.
Previous research has shown that animacy and object

size processing is carried out in a distributed and partly
overlapping network of brain regions in the occipital,
temporal, and parietal lobes (animacy: Sha et al., 2015; Bell,

Hadj-Bouziane, Frihauf, Tootell, & Ungerleider, 2009;
Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza,
2009; Wiggett, Pritchard, & Downing, 2009; Kriegeskorte
et al., 2008; Downing, Chan, Peelen, Dodds, & Kanwisher,
2006; Chao et al., 1999; size: Konkle & Caramazza, 2013,
2017; Fabbri, Stubbs, Cusack, & Culham, 2016; Bainbridge
& Oliva, 2015; Konkle & Oliva, 2012; Murray, Boyaci, &
Kersten, 2006). Some previous studies have also looked
at the temporal dynamics of animacy processing (Clarke,
Devereux, Randall, & Tyler, 2015; Carlson, Simmons,
Kriegeskorte, & Slevc, 2014; Cichy, Pantazis, & Oliva, 2014;
Carlson, Tovar, Alink, & Kriegeskorte, 2013; Liu, Agam,
Madsen, & Kreiman, 2009; Thorpe, Fize, & Marlot, 1996),
showing that the information related to animacy is pro-
cessed rapidly within the first 100 msec after stimulus onset.

However, crucial questions about the spatial and tem-
poral neural dynamics underlying animacy and real-world
size processing remain unanswered. Concerning the
spatial dynamics, it remains unknown how in detail ani-
macy and size information are represented. For example,
do all regions that process animacy use the same rep-
resentational format, or does the representational format
differ across regions? Similarly, it remains unknown how
animacy and size information interact and are integrated1Massachusetts Institute of Technology, 2Free University Berlin

© 2018 Massachusetts Institute of Technology Journal of Cognitive Neuroscience X:Y, pp. 1–18
doi:10.1162/jocn_a_01290



across the overlapping set of regions: Do all regions pro-
cess animacy and size in parallel in the same fashion, or
does a single region stand out? Concerning the temporal
dynamics, it remains unknown how animacy and real-
world size processing is orchestrated in time. Given that
the properties real-world size and animacy are indepen-
dent of each other, one might expect them to be pro-
cessed independently in the brain, engaging different
cortical sites at different moments. Alternatively, given
the universality and importance of those two properties,
the brain might use a distributed code where real-world
size and animacy are processed in parallel and redun-
dantly in the same cortical sites and with similar temporal
dynamics.

To reveal the processing of animacy and real-world size
in the human brain, we recorded brain data with fMRI
and MEG while participants viewed a set of object images
that differed in animacy and real-world size indepen-
dently. To reveal the spatial dynamics, we applied rep-
resentational similarity analysis (RSA; Nili et al., 2014;
Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, &
Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008)
to fMRI data to investigate the loci of animacy and size
processing. To reveal the temporal dynamics, we applied
multivariate pattern classification and RSA to MEG data in
a time-resolved fashion (Cichy et al., 2014; Carlson et al.,
2013). Finally, we combined MEG and fMRI data using
a novel extension of MEG–fMRI fusion by representa-
tional similarity (Cichy et al., 2016; Cichy et al., 2014) to
reveal the neural dynamics specific to the processing of
animacy and size resolved simultaneously in space and
time.

METHODS

Experimental Design

The MEG and fMRI data have been fully described in a
previous publication (Cichy et al., 2016) and are available
upon request. Here, we repeat the pieces of information
that are necessary for reproduction.

Participants

Fifteen healthy volunteers (five women; age: mean =
26.60 years, SD = 5.18 years) participated in this expe-
riment. All participants were right-handed with normal
or corrected-to-normal vision and provided written
consent. The studies were conducted in accordance with
the Declaration of Helsinki and approved by the local
ethics committee (institutional review board of the
Massachusetts Institute of Technology).

Stimulus Set and Stimulus Presentation Parameters

The stimulus set contained 118 real-world object images
on real backgrounds. The full image set is available at

brainmodels.csail.mit.edu/images/stimulus_set.png. The
image set contained 27 animate objects (nine small, three
medium, and 15 large) and 91 inanimate objects (33 small,
32 medium, and 26 large). For examples, see Figure 1A.
For both MEG and fMRI recordings, images were pre-
sented at the center of a screen at 4.0° visual angle overlaid
with a gray fixation cross. The presentation duration was
500 msec per image.

fMRI Data Acquisition and Preprocessing

We used the fMRI data as reported in Cichy et al. (2016),
Experiment 2. The experiment consisted of two sessions
of 9–11 runs of 486 sec in duration each. In each run,
every image was presented once. Image order was ran-
domized with the restriction that the same condition
was not presented on consecutive trials. Twenty-five
percent of the trials were null trials during which only a
gray background was presented and the fixation cross
changed luminance for 100 msec. Participants were in-
structed to respond to the change in luminance with a
button press. SOA was 3 sec, or 6 sec with a preceding null
trial.
MRI data were acquired on a 3-T Trio scanner (Siemens)

with a 32-channel head coil. Structural images were
obtained using a standard T1-weighted sequence (192 sag-
ittal slices, field of view [FOV]= 256mm2, repetition time=
1900 msec, echo time = 2.52 msec, flip angle = 9°). Func-
tional data were obtained with the following parameters:
gradient-echo EPI sequence: repetition time = 750 msec,
echo time = 30 msec, flip angle = 61°, FOV read = 192 mm,
FOV phase = 100% with a partial fraction of 6/8, through-
plane acceleration factor of 3, bandwidth = 1816 Hz/Px,
resolution = 3 mm3, slice gap = 20%, slices = 33, and
ascending acquisition.
The fMRI data were preprocessed using SPM8 (www.

fil.ion.ucl.ac.uk/spm/). For each participant, fMRI data
from both sessions were realigned and coregistered to
the T1 structural scan acquired in the first MRI session.
Then, MRI data were normalized to the standard Montreal
Neurological Institute template. A general linear model
(GLM) was used to estimate the fMRI response to the
118 image conditions. Image onsets and durations entered
the GLM as regressors and were convolved with a hemo-
dynamic response function. Movement parameters were
included as nuisance parameters. Additional regressors
modeling the two sessions were included in the GLM.
The estimated condition-specific GLM parameters were
converted into t values by contrasting each condition esti-
mate against the implicitly modeled baseline. The t values
were used in a later analysis for constructing fMRI dis-
similarity matrices.

MEG Data Acquisition and Preprocessing

Participants completed one session of 15 runs of 314 sec
in duration each. In each run, every image was shown
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twice, and the sequence of image presentations was
randomized. Trial onset asynchrony varied between 0.9
and 1 sec. Every three to five trials, an image of a paper
clip was shown to which participants were asked to re-
spond with an eye blink and a button press. Participants
were instructed to not blink at other times.
The MEG signals were acquired from 306 channels

(204 planar gradiometers, 102 magnetometers; Elekta
Neuromag TRIUX, Elekta) at a sampling rate of 1 kHz,
filtered between 0.03 and 330 Hz.
To denoise data, temporal source space separation

(maxfilter software, Elekta; Taulu & Simola, 2006; Taulu,
Kajola, & Simola, 2004) was applied before further analyz-
ing data with Brainstorm (Tadel, Baillet, Mosher, Pantazis,
& Leahy, 2011). In detail, for each trial, we extracted peri-
stimulus data from−100 to +700 msec, removed the pre-
stimulus baseline mean from the signals, and smoothed
data with a 20-msec sliding window.

Definition of fMRI ROIs

We parcellated the whole cortex into 60 nonoverlapping
ROIs in each hemisphere. ROIs were defined through
using two probabilistic atlases of the human brain (Wang,
Mruczek, Arcaro, & Kastner, 2015; Tzourio-Mazoyer et al.,
2002). First, we used the retinotopically defined ROIs
from the Wang et al. (2015) probabilistic atlas. As this
atlas does not cover the whole cortex, for the remaining
cortex, we used the anatomically defined ROIs of the
automated anatomical labeling toolbox (Tzourio-Mazoyer
et al., 2002). To create nonoverlapping ROIs from proba-
bilistic maps, we assigned each voxel to the ROI of high-
est probability; the aggregate probability over all ROIs
was ≥33%.
All analyses and statistics were conducted for all ROIs,

but for ease of visualization, the results are shown only
for those ROIs that had any significant effect after ac-
counting for multiple comparisons across all tests. From
the ROIs discussed in the article, the following ROIs were
defined using the Wang et al. (2015) atlas: early visual
cortex (EVC), lateral occipital cortex (LO), temporal occip-
ital cortex (TO), ventral occipital cortex (VO), parahippo-
campal cortex (PHC), intraparietal sulcus (IPS), and
superior parietal lobe (SPL). EVC was defined as the com-
bination of V1, V2, and V3masks. We combined these three
regions because visual stimuli were presented at 4° visual
angle, which is an eccentricity at which the distinction
between V1, V2, and V3 is difficult as they are located close
together in the foveal confluence. IPS and SPL corre-
sponded to IPS0 and SPL1 in the nomenclature of Wang
et al.’s (2015) atlas. LO, TO, VO, and PHC were combi-
nations of masks LO1 and LO2, TO1 and TO2, VO1 and
VO2, and PHC1 and PHC2, respectively. Fusiform gyrus
(Fusi), inferior temporal gyrus (ITG), and middle temporal
(MT) were defined using the automated anatomical label-
ing atlas (Tzourio-Mazoyer et al., 2002).

RSA

RSA enables relating representations obtained from dif-
ferent modalities such as computational models, MEG,
and fMRI data (Kietzmann, Gert, Tong, & König, 2017;
Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Cichy,
Pantazis, & Oliva, 2016; Cichy et al., 2014; Khaligh-Razavi
& Kriegeskorte, 2014; Nili et al., 2014; Kriegeskorte &
Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008;
Kriegeskorte, Mur, Ruff, et al., 2008). The basic analytical
tool of RSA is the representational dissimilarity matrix
(RDM). An RDM is a square symmetric matrix, defined in
rows and columns by experimental conditions, in which
off-diagonal elements indicate the dissimilarity between
the activation patterns associated with two different con-
ditions. The diagonal of the RDM reflects comparisons
between identical conditions and is thus set to 0 and ex-
cluded from the analysis. An RDM thus summarizes the
representational geometry in terms of dissimilarity be-
tween condition-specific activation patterns.

Definition of RDMs

MEG RDMs. The analysis was conducted separately for
each participant. For each time point t of the peristimu-
lus epoch time, we compared pairwise the dissimilarity of
MEG data for all 118 conditions (images) to construct a
118 × 118 RDM. The measure of dissimilarity was cross-
validated decoding accuracy (as in Cichy et al., 2016;
Cichy et al., 2014) between the 306-channel MEG re-
sponse patterns.

fMRI RDMs. For each participant and each brain area,
the fMRI RDMs were constructed by computing pairwise
dissimilarities (1 minus Pearson’s correlation) between
condition-specific voxel t value patterns.

Animacy model RDM. The animacy model RDM is
binary with entry 1 if two conditions differed in animacy
and 0 if both conditions were both animate or inanimate.

Size model RDM. The size model RDM was constructed
based on behavioral ratings of size judgment. In detail,
we asked 10 participants to arrange the 118 objects into
three real-world size categories: (a) small: finger size or
one-hand size; (b)medium: size of twohands; and (c) large:
body size or larger. Each image was then assigned to
the size category voted by most participants. We used
these size categories to construct the size model RDM.
RDM elements corresponding to comparisons of images
of the same size were assigned the entry 0; RDM elements
corresponding to comparisons of images of different sizes
were assigned the entry 2 if they were large versus small
and 1 if otherwise.

Gist model RDM. To evaluate the low visual feature
content of the images, we computed an RDM based on
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the Gist descriptor (Oliva & Torralba, 2001, 2006). The
Gist code is available at people.csail.mit.edu/torralba/
code/spatialenvelope/. In detail, we computed image-
specific Gist features by subdividing the image into 16
bins, and then for each bin, we determined the filter
energy of Gabor filters in eight orientations over four dif-
ferent spatial scales. We then compared (Spearman’s r)
image-specific Gist features pairwise to construct a Gist
model RDM.

Standard RSAs

We conducted three standard RSAs differing in the modal-
ities compared: (i) MEG-to-category model, (ii) fMRI-to-
category model, and (iii) MEG-to-fMRI.

MEG-to-category model RSA. We correlated participant-
specific MEG RDMs at each time point to the reference
category model RDM (size or animacy model RDM). This
yielded an MEG-to-category model similarity time course
for each participant and category model.

fMRI-to-category model RSA. We correlated participant-
specific fMRI RDMs of each ROI to the reference category
model RDMs. This yielded an fMRI-to-category model
similarity value for each participant, category model,
and ROI.

MEG-to-fMRI RSA. Also termed MEG–fMRI fusion (Cichy,
Pantazis, et al., 2016), for this analysis, we correlated
participant-specific fMRI RDMs for each ROI with the
participant-averaged MEG RDM at each time point. This
yielded an MEG-to-fMRI similarity map for each partici-
pant and time point.

Noise ceiling. To account for the fact that different
brain areas have different levels of noise, we estimated
the noise ceiling for each brain area (Nili et al., 2014)
and the fMRI-to-category model RSA results for each
ROI were normalized with the corresponding noise ceil-
ing. The noise ceiling is defined as the mean correlation
of each participant’s RDM with the participant-averaged
RDM, where the average RDM can be thought of as an
estimate of the true model’s RDM. The noise ceiling in-
dicates the expected correlation of the true model given
the noise in the data.

Onset and peak latency. We calculated the onset and
peak latencies for participant-averaged results of the
MEG-to-category model and MEG-to-fMRI RSA. The peak
latencies and standard error are obtained by 10,000 boot-
strap resampling of participants.

Statistical testing. For each of these three standard
RSAs, namely, MEG-to-model, fMRI-to-model, and MEG-
to-fMRI, statistical significance was obtained by a random
effects analysis over the participant-specific results. In

detail, following the statistical procedure in Nili et al.
(2014), we used the Wilcoxon signed-rank test for asses-
sing statistical significance of RDM correlations. This
test is nonparametric (Gibbons & Chakraborti, 2011;
Hollander & Wolfe, 1999) and thus does not make
assumptions about the distribution of the data. When
comparing peaks and onset latencies, we used two-sided
bootstrap resampling test. In other cases that involved
testing if a correlation is significantly above zero, we
conducted one-sided signed-rank test with p < .05. We
used false discovery rate (FDR; Simmons, Nelson, &
Simonsohn, 2011; Benjamini & Hochberg, 1995) to cor-
rect for multiple comparisons: fMRI-to-category model
RSA results were corrected across brain regions, MEG-
to-category model RSA was corrected across time points,
and MEG-to-fMRI RSA was corrected across both brain
regions and time points.

Content-dependent MEG–fMRI Fusion Algorithm

Standard MEG–fMRI fusion reveals the whole spatio-
temporal neural dynamics after visual stimulation. To
further characterize spatiotemporal neural dynamics spe-
cific to the processing of a particular type of information,
such as animacy or real-world size (referred to here as
“content”), additional algorithmic constraints are re-
quired. Toward this aim, we used a statistical procedure
called “conjunction inference” (Nichols, Brett, Andersson,
Wager, & Poline, 2005) to combine the results of the three
standard RSA procedures explained above, namely, (i) MEG-
to-fMRI, (ii) MEG-to-category model RSA, and (iii) fMRI-
to-category model RSA. In particular, statistical inference
as described above yielded significant effects for each
procedure alone. To reveal the spatiotemporal dynamics
specific to a particular content, we then combined the re-
sults of the three procedures with an ‘AND’ operation. The
resulting combined statistical map indicates MEG time
points linked with fMRI locations that have a similar repre-
sentational geometry to each other and to the reference
model RDM. Visualizing the obtained 3-D time–location–
content statistical map at each millisecond results in a
movie of MEG–fMRI correspondence with respect to a
prespecified content (e.g., size or animacy), thus revealing
the spatiotemporal neural dynamics underlying the pro-
cessing of the particular content.

RESULTS

General Experimental Rationale

We present the overall experimental rationale to investi-
gate the spatiotemporal neural dynamics of processing
the object properties animacy and real-world size in
Figure 1. The analyses were based on fMRI and MEG data
collected by Cichy, Pantazis, et al. (2016) on 118 different
natural images of everyday objects. The object set com-
prised both animate and inanimate objects in either of
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three sizes, namely, small, medium, and large. Figure 1A
displays examples of stimuli in each subgroup. During
the study, observers watched the object images pre-
sented for 0.5 sec each while their brain activity was

recorded with fMRI and MEG in separate sessions, to re-
solve neuronal activity in both high spatial and temporal
resolutions, respectively. Participants performed a task
orthogonal to the experimental conditions presented and

Figure 1. (A) Experimental conditions. MEG and fMRI data were presented while participants viewed 118 object images of real-world objects.
The objects were either animate or inanimate and of three sizes: small, medium, and large. Representative examples are shown here (see
Supplementary Figure 2 for all images). (B) On the basis of objects’ animacy and physical size, we constructed two 118 × 118 model RDMs.
The animacy model RDM identifies a representational space in which objects are clustered based on their animacy. The size model RDM identifies
a representational space in which objects are clustered based on their physical size. For illustrative purposes, here, we show cartoony versions of
the model RDMs. Here and in further panels, the animacy model is color-coded green and the size model is color-coded blue. There is a small
correlation of r= .06 between these two model RDMs. (C) fMRI-to-model RSA. We parcellated each hemisphere of cortex into L= 60 nonoverlapping
ROIs. For each region i (from 1 to L), we correlated condition-specific fMRI activation patterns for all condition pairs, yielding a 118 × 118 fMRI
RDM for each ROI. We then correlated region-specific RDMs with the animacy and size model RDMs. This yielded one value of representational
similarity for each ROI and model. (D) MEG-to-model RSA. For each time point t (from −100 to 700 msec in 1-msec steps), we correlated condition-
specific MEG sensor activation patterns for all conditions, yielding a 118 × 118 MEG RDM for each time point. We then correlated time-specific
RDMs with the animacy and size model RDMs. This yielded a time course of representational similarity for each model. (E) Content-dependent
MEG–fMRI fusion. To reveal the spatiotemporal dynamics during object vision, we conducted MEG-to-fMRI RSA by correlating all region-specific RDMs
with all time-point-specific RDMs. To identify the aspects of neural activity specific to the processing of either animacy or size, we conducted a
conjunction test on significant results from MEG-to-model RSA, fMRI-to-model RSA, and MEG-to-fMRI RSA for the animacy and size model separately.
This yielded a spatiotemporally resolved picture of brain activity for animacy and object size processing. Med. = medium.
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were neither told to attend to specific properties of the
objects nor informed about the hypotheses of the study.
This ensures that the brain responses measured are not
specific to a particular task but reflect task-independent
and automatic processing of these properties.

To model the effect of size and animacy on brain
representations independently of each other, we con-
structed two RDMs (Figure 1B). These RDMs are models
of the assumption that dissimilarity is higher for objects
across category boundary than within category boundary.

To reveal the spatiotemporal neural dynamics of real-
world size and animacy processing, we used RSA in three
different ways. First, to identify the brain regions involved
in processing animacy and object size, we correlated the
model RDMs with 60 fMRI RDMs, one for each of the
60 nonoverlapping regions in each hemisphere (Fig-
ure 1C). This analysis yielded one value of representa-
tional similarity between each model and each region.
Second, to identify when in time during perception ani-
macy and object size are processed, we correlated model
RDMs with time-resolved MEG RDMs built from sensor
activation patterns in 306 MEG sensors (Figure 1D). This
analysis yielded one value of representational similarity
between each model and each time point. Third, for a
view on brain activity resolved simultaneously in space
and time, we conducted MEG-to-fMRI RSA (termed
“MEG–fMRI fusion”; Cichy et al., 2015) by correlating all
region-specific RDMs with all time-point-specific RDMs
(Figure 1E). To identify the aspects of neural activity spe-
cific to the processing of animacy and size, we conducted
a conjunction test on significant results from MEG-to-
model RSA, fMRI-to-model RSA, and MEG-to-fMRI RSA for
the animacy and size model separately. This content-
dependent fusion approach yielded a spatiotemporally
resolved picture of brain activity for animacy and object
size processing.

A Distributed and Partly Overlapping Network
of Brain Regions Represents Animacy and
Real-world Object Size

To identify the network of brain regions representing
animacy and object size, we conducted fMRI-to-model
RSA (Figure 1C). Figure 2 shows the brain regions that
were significantly correlated with at least one of the model
RDMs (animacy: Figure 2A; physical size: Figure 2B; N =
15, one-sided signed-rank test, with results FDR-corrected
across all brain parcels at p < .05).

We found a network of brain areas primarily located in
the ventral temporal cortex, with the set of brain regions
representing animacy being a subset of the regions rep-
resenting object size. In detail, animacy was encoded in
LO, TO, VO, PHC, Fusi, ITG, MT, and the left IPS. Size
was encoded in all those regions as well and, in addition,
in the left EVC and right SPL.

Within the identified network, PHC stood out through
a combination of characteristics that were unique. First,

PHC in both hemispheres encoded both animacy and
object size. Second, the correlation with the size model
was higher that with most other regions (for all regions
in both hemispheres except left LO and Fusi where the
difference was not statistically significant, N = 15, two-
sided signed-rank test, FDR-corrected at p < .05 across
all pairs of ROIs). Third, the correlation also with the
animacy model was higher than with most other regions
(except left and right VO).
To evaluate the robustness of the results, we investi-

gated the processing of size and animacy independent

Figure 2. Large-scale network of brain regions involved in processing
(A) animacy and (B) real-world object size. Bars show correlations
between model RDMs with fMRI RDMs for 10 brain ROIs (out of 60)
that had a significant correlation with either the animacy or real-world
size model RDM. Error bars indicate SEMs. Asterisks indicate
significant RDM correlations (N = 15, one-sided signed-rank test,
p < .05 FDR-corrected across the number of ROIs in both
hemispheres, i.e., 60 ROIs in two hemispheres = 120). The black
horizontal line on top of IPS shows a significant difference between
left- and right-hemisphere correlations with the model RDMs—no
other region had a significant difference (N = 15, two-sided signed-
rank test, FDR-corrected at p < .05). Given that different ROIs have
different noise ceilings, we normalized RDM correlations for each
ROI with respect to its noise ceiling (defined as in Nili et al.,
2014) so that the correlations between ROIs become more readily
comparable. The hollow part of the bars shows noise-normalized
correlation values (axis on the left). The nonnormalized correlation
values are indicated with the solid bars (axis on the right). Acronyms
used in the figure for brain ROIs are as follows: EVC, LO, TO, VO,
Fusi, PHC, IPS, and SPL.
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of each other by repeating the fMRI-to-model RSA within
each level of the factors size and animacy separately. In
detail, we conducted fMRI-to-size model RSA twice sepa-
rately for animate and inanimate objects (Figure 3C–E)
and fMRI-to-animacy model RSA thrice separately for
each size level (Figure 3A and B). In all cases, we found

ROIs with a significant correlation with the reference
model RDM. However, for small objects, the effect of
animacy was particularly small and only observed in the
right PHC.

In addition, to ameliorate the concern that the scene
background might bias the results related to the object

Figure 3. (A, B) Brain regions involved in size processing assessed independently for animate and inanimate objects. (C–E) Brain regions involved
in animacy processing assessed independently for small, medium, and large objects. As in Figure 2, bars show correlations between model
RDMs with fMRI RDMs for the 10 brain ROIs. Stars show significant correlations. The correlation values are not noise normalized.
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size, we determined whether there was a significant cor-
relation between object size and the retinal size of the
object. For each image, we calculated the number of
pixels covered by the objects and evaluated whether this
number differed across the three real-world size catego-
ries (i.e., small, medium, and large). Results are reported
in Supplementary Figure 3. There was no difference be-
tween the three real-world size categories, thus demon-
strating that object size effect is not confounded by the
pixel size of the objects.

In summary, the fMRI-to-model RSA revealed a dis-
tributed and partly overlapping set of brain regions encod-
ing animacy and size, with PHC representing both object
properties stronger than most other regions. Our results
corroborate and extend previous results of fMRI studies
using univariate methods (Konkle & Caramazza, 2013,
2017; Bainbridge & Oliva, 2015; Konkle & Oliva, 2012) that
reported similar brain networks of animacy and real-world
size processing.

Fine-grained Differences in the Representation of
Animacy across Brain Regions

The finding of a distributed and partly overlapping set of
regions for animacy and size poses the question about
the nature of animacy and size representations in those
regions. One possibility is that size and animacy are rep-
resented the same way in all regions with a highly redun-
dant code. Another possibility is that different regions
represent animacy or size in different ways.

To investigate this issue qualitatively, we visualized the
representational geometry of each of the 10 regions in-
volved in either size or object processing. For this, we
conducted multidimensional scaling (MDS; Borg &
Groenen, 2005; Kruskal & Wish, 1978) on the region-
specific RDMs and plotted the results in the first two di-
mensions (Figure 4A). Visual inspection suggested that
ROIs differed in the representational geometry for ani-
macy. For example, TO showed a tight cluster for animate
objects but not for inanimate objects. PHC revealed the
opposite pattern, that is, a tight cluster for inanimate but
not animate objects. LO had two equally tight clusters for
animate and inanimate objects.

To quantify these qualitative observations, we defined
three model RDMs (Figure 4B) exploring different
assumptions about animacy representations. Model 1
assumes equally tight clustering for animate and inani-
mate objects. Model 2 assumes tighter clustering for
animate objects; and Model 3, for inanimate objects.
We then correlated the region-specific fMRI RDMs for
each of the 10 regions with the Model 1–3 RDMs. This
analysis (Figure 4C) confirmed the qualitative obser-
vations quantitatively for LO, TO, and PHC and did not
reveal any significant effects that were consistent across
hemispheres in any other region. Thus, different ROIs
have different representational geometries of animacy.
We found that some regions (e.g., LO) did not show a

specific preference for one of the representational geo-
metries, whereas both TO and PHC preferred a different
representational geometry of animacy (Models 2 vs. 3).
This shows that LO versus TO and PHC have different
representational geometries of animacy. This suggests
that, although all those regions represent animacy, they
do so in different ways, potentially because they weigh
features that define animacy differently.
In equivalent fashion, we further explored different

representational geometries for object size. However,
none of the brain areas showed a consistent and signifi-
cant preference for one representational geometry over
the others.

Temporal Dynamics of Animacy and Object Size
Processing during Object Vision

Using MEG-to-model RSA, we investigated when in time
during visual perception are animacy and real-world object
size processed (Figure 1D). The results are shown in
Figure 5A. We determined peak and onset latencies to
describe the resulting time courses. Onset latencies were
similar for size and animacy but slightly shorter for size
(size: 144 ± 1 msec [SEM]; animacy: 156 ± 1 msec; p <
.01, bootstrap resampling of participants). There was
no significant difference between the peak latencies for
size and animacy (size: 193 ± 29 msec; animacy: 184 ±
23 msec; bootstrap resampling, p > .05).
To ascertain the robustness of the results, we investi-

gated the processing of size and animacy independent of
each other by repeating the MEG-to-model RSA within
each level of the factors size and animacy separately. In
detail, we conducted MEG-to-size model RSA twice sepa-
rately for animate and inanimate objects (Figure 5B) and
MEG-to-animacy model RSA thrice separately for each
size level (Figure 5C). The analyses revealed significant
effects in all cases, demonstrating the robustness of our
findings.
Together, we report for the first time a time-resolved

neuromagnetic signature of physical object size process-
ing and corroborate previous studies investigating the
temporal dynamics of animacy processing by finding
comparable peak latencies at ∼150 msec (Cichy et al.,
2014; Carlson et al., 2013).

Content-dependent MEG–fMRI Fusion Resolves
Processing of Animacy and Size Simultaneously
in Space and Time

To resolve the neural dynamics of animacy and size pro-
cessing simultaneously in space and time, we used an
extension of MEG–fMRI fusion that made it content de-
pendent (Figure 1E). The general rationale of fMRI–
MEG fusion by RSA is this: If an RDM based on MEG
patterns at time point t is similar to an RDM based on
fMRI patterns at location l, location l might be the source
of the signal observed at t. Conducted for all time points
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Figure 4. Representational geometries of regions representing animacy and object size. (A) We used nonmetric MDS minimizing the loss function
stress (Borg & Groenen, 2005; Kruskal & Wish, 1978) on region-specific fMRI RDMs to visualize how brain regions represent object size and
animacy. The MDS results are plotted for the first two dimensions. Each condition (i.e., image) is represented by a colored dot, with the color
indicating category (animacy) and the dot shape indicating real-world size. (B) Three model RDMs quantifying three different representational
geometries for animacy. Model 1 assumes that both animate and inanimate objects form tight clusters. Model 2 assumes a tighter cluster for animate
compared with inanimate objects. Model 3 assumes a tighter cluster for inanimate compared with animate objects. (C) Results of fMRI-to-model
RSA for the three different models of animacy. Bars show nonnormalized RDM correlations for regions that showed significant effects that were
consistent across hemispheres. Stars above each bar show statistical significance (N = 15, one-sided signed-rank test, p < .05). A horizontal line over
two bars indicates that the two model RDMs perform significantly differently (N = 15, two-sided signed-rank test, p < .05). Results are corrected
for multiple comparisons by FDR correction across all pairwise comparisons. (D) Sample fMRI RDMs for LO, TO, and PHC, each showing a
different representational geometry of animacy.
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and location combinations, this yields a spatiotemporally
resolved map of brain activity. Here, we extend this for-
mulation by the constraint that this spatiotemporal map
must have a representational geometry significantly cor-
related with the theoretical model of animacy or the
theoretical model of size (Figure 1E), thus turning it into
content-dependent MEG–fMRI fusion. This analysis has
the potential to reveal the dynamics of size and animacy
processing beyond what MEG or fMRI alone can do by
disambiguating the many-to-many mapping between loca-
tions and time points.

The full content-dependent MEG–fMRI fusion results
for size and animacy processing are shown in Movie 1.
Figure 6 shows the results at key time points. The
main findings were threefold. First, we found a spatio-
temporally distributed and partly overlapping network of
brain areas involved in processing both size and animacy
from ∼156 msec onward. Second, PHC showed distinct
behavior from other regions within this network, high-
lighting it as a key region in animacy and size processing.
Third, EVC proved to be a differentiator between animacy
and size processing in coding only real-world object size

Figure 5. (A) Temporal
dynamics of animacy and size
processing. Time courses are
MEG-to-model similarities
averaged across participants.
Shading indicates standard errors.
(B) Temporal dynamics of
size processing assessed
independently for animate
and inanimate objects.
(C) Temporal dynamics of
animacy processing assessed
independently for small,
medium, and large objects.
Significant time points (N =
15, one-sided signed-rank test,
p < .05, FDR-corrected for
number of time points) are
indicated by color-coded
horizontal lines above time
courses. In B and C, dashed
lines indicate results within
experimental factors and solid
curves indicate the average
across them.
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(starting at 144 msec), but not animacy. We detail each
main finding below.

Distributed and Partly Overlapping Spatiotemporal
Dynamics Underlie Animacy and Real-world
Size Processing

We found that the spatiotemporal dynamics underlying
animacy and real-world size processing were distributed
and partly overlapping (Figure 6). In detail, starting at
∼144 msec, several brain regions represented real-world
object size, including the left EVC, bilateral PHC, LO,
VO, and Fusi. From ∼156 to ∼350 msec, we found a dis-
tributed and partially overlapping set of brain areas in-
cluding PHC, ITG, VO, LO, Fusi, and TO. In particular,
we inspected the regions active at the peak times of ani-
macy and size processing as indicated by MEG-to-model
analysis above (Figure 5A). At the peak time for animacy
processing, that is, 178 msec, bilateral LO, VO, Fusi, PHC,
and left MT and ITG were active.
At the peak time for object size processing, that is,

193 msec, bilateral PHC, right VO, and left MT were
active. Moving ahead to the period of 220–260 msec,
we found that PHC alone represented both size and
animacy. At 350 msec, activity related to both size and
animacy processing in several regions reemerged. Finally,
at 655 msec, we found that EVC represented real-world
size.
In summary, these results delineate the neural dynam-

ics in the overlapping set of brain regions that represent
size and animacy, showing that they represent both
object properties with similar temporal dynamics.

PHC is a key region for representing animacy and real-
world size. The fMRI-to-model RSA (Figure 2) had singled
out PHC as a key region in processing both size and
animacy. The results of content-dependent MEG–fMRI
fusion extend this finding by showing that PHC simul-
taneously codes for both size and animacy over several
hundreds of milliseconds from ∼156 to ∼430 msec.

A supplementary analysis of standard ROI-based MEG
fusion further emphasized the role of PHC in size and
animacy processing by showing that peak and onset
latencies (Supplementary Table 1) in PHC were later
than for many ventral stream regions (bootstrap test,
FDR-corrected at p < .05). Specifically, in the left hemi-
sphere, PHC’s onset latency was significantly later than
those of VO, LO, and Fusi, and PHC’s peak latency was
significantly later than that of LO. In the right hemi-
sphere, PHC’s peak latency was significantly later than
those of LO and Fusi, and PHC’s onset latency was sig-
nificantly later than that of LO.

In summary, we found that PHC was more strongly
engaged in both animacy and size processing than other
visual regions and that peak activity in PHC occurred later
than in other ventral visual stream regions. Together, this
suggests that PHC may be a cortical hub where object-
related information is aggregated after being processed
in regions lower in the visual processing hierarchy.

The EVC: From Representing Low-level Visual Features
to High-level Real-world Size Information

We observed that the left EVC represented real-world
size information starting at 144 msec (±1 SEM; Figure 6)

Movie 1. The top row shows
the spatiotemporally resolved
movie for animacy processing in
green. The bottom row shows
the spatiotemporally resolved
movie for object size processing
in blue. For reference, size
and animacy time courses are
shown in the center. The image
exemplarily shows a snapshot
at 170 msec. (www.dropbox.
com/s/w92de00rv2h4jny/
movie1_AnimSize.mp4?dl=0).
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but did not code for animacy at any time point. This
singles out EVC as a differentiator between real-world
size and animacy processing.

This result poses the question whether the observed
real-world size-related activity reflects feedforward pro-
cessing of low-level visual information or whether it reflects
feedback processing of high-level visual information. To
investigate this, we conducted a supplementary standard
ROI-based fusion analysis, revealing the temporal dynamics
of EVC independent of content (Supplementary Figure 1,
Supplementary Table 1). We reasoned that standard
content-independent analysis of EVC activity would reveal
the dynamics of low-level visual information processing
and thus allow discerning potential differences in timing
that might differentiate between the two options. We
found that EVC had an early onset latency of 78 msec
(±4 SEM) and a peak latency of 128 msec (±2 SEM) in
the left hemisphere (for the right EVC: onset = 72 msec
[±4 SEM], peak = 129 msec [±12 SEM]), likely reflecting
feedforward processing of low-level visual information
(for further evidence, see also the next section). The
temporal precedence and thus dissociation of peak and
onset latencies (bootstrap test, p < .05) observed in the
content-independent analysis compared with the
content-dependent analysis argues against the idea of feed-
forward processing of low-level features as underlying the

real-world object size signal in EVC. It instead favors the
view that the observed representation of real-world size
in EVC reflects processing high-level visual information
feedback from higher visual areas.
In summary, we find evidence of two distinct process-

ing phases in EVC: one early phase of processing low-level
visual information and a later phase (starting at ∼144 msec)
of processing higher-level visual information such as real-
world size.

The Spatiotemporal Dynamics of Processing Animacy
and Size Are Distinct from Processing Low-level
Visual Features

Animacy and real-world size are high-level visual proper-
ties that are not trivially encoded in low-level visual fea-
tures, as demonstrated by the complex computational
transformations of low- to high-level visual features nec-
essary for successful image categorization in artificial
systems (Kietzmann, McClure, & Kriegeskorte, 2017;
Krizhevsky, Sutskever, & Hinton, 2012; Rajaei, Khaligh-
Razavi, Ghodrati, Ebrahimpour, & Abadi, 2012; Serre,
Oliva, & Poggio, 2007). Under this assumption, the neu-
ral activity related to animacy and object-size processing
described here reflects processing of high- rather than
low-level visual properties.

Figure 6. Spatiotemporal dynamics of animacy and real-world size revealed by content-dependent MEG–fMRI fusion. Snapshots of Movie 1 detailing
the full spatiotemporally resolved neural representation related to animacy (top) and size (bottom) processing. The middle row reproduces the
time courses of size and animacy processing as shown in Figure 5A. Vertical red lines mark particular time points of interest. L = left; R = right.

12 Journal of Cognitive Neuroscience Volume X, Number Y



To control whether this assumption in fact holds in our
experimental setting, we investigated whether the spatio-
temporal dynamics of low-level visual processing are dis-
tinct from the dynamics of processing animacy and size. To
capture the low-level visual feature content of the stimulus
set, we used the Gist descriptor (Oliva & Torralba, 2001,
2006). Gist is a computer vision image descriptor based on
localized responses of Gabor filters at different scales and
orientations. It has been shown to predict fMRI responses
of early and midlevel visual areas previously (Khaligh-Razavi,
Henriksson, Kay, & Kriegeskorte, 2017), making it a rea-
sonable model of low-level visual processing in the cortex.
Importantly, as the GIST model has been found to pre-

dict several scene layout-related properties such as open-
ness, expanse, and indoor/outdoor (Oliva & Torralba,
2001, 2006; Oliva, 2005), this also serves as a control
for the scene layout. We constructed a model RDM based
on Gist features for the 118 object images and compared
it with the size and also animacy model RDMs. We found
that the correlation was very low (i.e., Gist-size model
correlation was .045 and Gist-animacy model correlation
was .008), which makes it unlikely that the size or ani-
macy effect observed here was driven by low-level to
midlevel visual features or the scene layout. To further
investigate the role of low-level visual features, we calcu-
lated size/animacy correlations with MEG, after regressing
out the Gist effect (Supplementary Figure 4). Comparing
time courses where the Gist RDM was partialed out with
the time courses where it was not (same as reported in

Figure 5) shows a significant difference only early be-
tween 93 and 130 msec for animacy and 79 and 150 msec
for size. This further demonstrates that the later compo-
nents of the size and animacy effects are unlikely to be
affected by low-level/midlevel visual features as captured
by the Gist features.

We also conducted the fMRI-to-model RSA (Figure 1C),
MEG-to-model RSA (Figure 1D), and content-dependent
MEG–fMRI fusion (Figure 1E) using a model RDM con-
structed from the Gist descriptor of the stimulus set.
The fMRI-to-Gist-model RSA revealed significant correla-
tions with bilateral EVC and left V4, but no other visual
areas (Figure 7A). The MEG-to-Gist-model RSA revealed
a time course different from the one revealed for the ani-
macy and size model (as shown in Figure 5A). In partic-
ular, for Gist, both the onset latency at 67 msec (±6 msec
[SEM]) and the peak latency at 120 msec (±7 msec
[SEM]) were significantly smaller than the onset and peak
latencies for either animacy or real-world size (bootstrap
resampling test, p < .001).

Finally, content-dependent MEG–fMRI fusion for Gist
further revealed that the spatiotemporal dynamics of
processing Gist were different from processing animacy
and size (Figure 7C and Movie 2). The identified dynam-
ics started in EVC at 84 msec, followed by V4 20 msec
later, and persisted in EVC for almost the entire percept
duration until 500 msec. This is in stark contrast to the
onset of processing animacy and size at ∼150 msec in a
set of high-level visual regions for animacy and size.

Figure 7. Spatial and temporal
dynamics of processing low-
level visual features as captured
by the Gist descriptor. Results
of (A) fMRI-to-Gist model RSA.
Each bar shows correlation
between the RDM of the given
brain area and the gist RDM.
Correlations are normalized by
the noise ceiling of each brain
ROI. Nonnormalized RDM
correlation values are as follows:
left EVC = .07, right EVC = .06,
and right V4 = .05. (B) MEG-to-
Gist model RSA. Time series
has onset at 67 msec (±6 SEM )
and peak at 120 msec (±7 SEM ).
(C) Gist-dependent MEG–fMRI
fusion: We followed the same
procedure as explained in
Figure 1 for size and animacy,
except that here we used the
Gist model RDM. For a full
spatiotemporally resolved
neural activity related to Gist,
see Movie 2. The Gist RDM
had a correlation of .045 with
the size RDM and a correlation
of .008 with the animacy model
RDM. L = left; R = right.
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A further important difference was the timing and role
of EVC activation. In EVC, Gist processing started at
84 msec, which was earlier than size processing that
started at around 144 msec (Figures 5 and 6; p < .05,
based on bootstrap resampling test). This strengthens
the idea that the observation of size processing in EVC
is driven by feedback from higher visual areas.

DISCUSSION

Summary

We identified the spatiotemporal neural dynamics of ani-
macy and object size by applying RSA to fMRI and MEG
data. Investigation of the cortical regions representing
animacy and size using fMRI revealed a distributed and
partly overlapping set of cortical regions. This set of re-
gions extended from occipital to ventral and medial tem-
poral cortex and parietal cortex. Within the set, PHC was
singled out as the region representing animacy and size
stronger than most other regions. Fine-grained analysis of
representational geometry revealed that different regions
processed animacy in distinct ways. Investigation of the
time course of animacy and size processing using MEG
revealed overlapping temporal extent starting at around
150 msec and provided the first time-resolved neuro-
magnetic signature of real-world object size processing.
Using an extension of MEG–fMRI fusion that shows neural
dynamics specific to particular content, we revealed simul-
taneously in space and time the neural dynamics related
to processing animacy and size. We found partly over-
lapping and distributed dynamics, with PHC singled out
as a region that represented size and animacy persistently
when other regions did not. A control analysis revealed
that the neural dynamics of processing animacy and size
were distinct from the neural dynamics of processing
low-level visual features.

Limitations of the Content-dependent MEG–fMRI
Fusion Method

Although MEG–fMRI fusion in general and in the content-
dependent formulation is a promising method to resolve

neural activity in space and time, acknowledgment of its
limitations is necessary to guide interpretation. For one,
the method in its formulation here compares neural ac-
tivity measured at largely different spatial scales: Whereas
sensor-space MEG patterns reflect activity from all of the
cortices, fMRI searchlight patterns reflect activity in local
neural populations. Thus, depending on how neural sig-
nals from different sources impact MEG sensor-level acti-
vation patterns, correspondences might go unnoticed.
Similarly, for MEG–fMRI fusion to detect spatiotemporal
correspondences, relevant representational structure
must be present in both MEG and fMRI. However, there
is no guarantee that conditions evoking significant and
robustly different activation patterns in one imagingmodal-
ity will do so in the other imaging modality, too. For
example, Proklova, Kaiser, and Peelen (2017) found that,
whereas the animacy of objects in a particularly controlled
stimulus set was clearly detectable from fMRI patterns, it
was not detectable fromMEG sensor patterns. In summary,
as MEG–fMRI fusion depends on two methods with partic-
ular sensitivities and limitations that both establish correla-
tions rather than causality, both positive and negative
findings have to be interpreted cautiously.

A Distributed and Partly Overlapping Set of Cortical
Regions Represents Object Animacy and
Real-world Size

Our multivariate analyses based on representational sim-
ilarity showed that object animacy and size are repre-
sented in a distributed and partly overlapping set of
regions, rather than a single region. This result is consis-
tent with previous work, demonstrating shared and dis-
tributed networks of brain regions involved in processing
object properties and stimulus domains (Huth, de Heer,
Griffiths, Theunissen, & Gallant, 2016; Behrmann & Plaut,
2013; de Beeck, Brants, Baeck, &Wagemans, 2010;O’Toole,
Jiang, Abdi, & Haxby, 2005; Spiridon & Kanwisher, 2002;
Haxby et al., 2001; Ishai, Ungerleider, Martin, Schouten,
& Haxby, 1999). Thus, our results further strengthen the
view that the brain processes information in a distributed
rather than localized fashion. The advantage of such a
visual architecture might be manifold: For example, dis-
tributed representations are more robust to impairments,
and importantly, distributed but integrated large-scale
networks are essential to ensure rapid and accurate visual
object recognition (Behrmann & Plaut, 2013; Catani, 2007;
Mesulam, 1990).
Our results go beyond previous work in two ways.

First, we described the detailed representational geo-
metry used by the brain to represent animacy. Although
TO, LO, and PHC all represented animacy, we showed
that they did so in different ways. This qualifies the
notion of distributed networks for visual information
processing by showing that different nodes of the net-
work conduct related but different processing. Our re-
sults thus allow detailed predictions about behavioral

Movie 2. Spatiotemporally resolved neural activity related to Gist
descriptor. The image exemplarily shows a snapshot at 140 msec.
(www.dropbox.com/s/v2vqzpdx881mqhm/movie2_Gist.mp4?dl=0).
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deficits that might result from damage to those regions
or disturbance in processing therein. Future neuropsycho-
logical or brain stimulation studies using TMS might test
these predictions.
Our results also go beyond previous work in revealing

the full spatiotemporal dynamics in the network of re-
gions processing animacy and size (Konkle & Caramazza,
2013, 2017; Fabbri et al., 2016; Bainbridge & Oliva, 2015;
Konkle & Oliva, 2012). We demonstrated that, starting
from 160 msec after stimulus onset, both size and
animacy are represented in partially overlapping brain
areas with similar temporal dynamics. Within this spatio-
temporally shared network, PHC was singled out among
other regions in three ways: It simultaneously coded for
both size and animacy from ∼160 to ∼430 msec, it was the
only region representing both size and animacy from 220
to 260 msec, and it had the highest RDM correlation with
the reference animacy and size model RDMs. These
results combined indicate a critical role for PHC in re-
presenting size and animacy in the human brain. They fur-
ther suggest that PHC is a key cortical node that combines
the outputs of two parallel processing streams for size and
animacy.
Previous studies did not report a special role for PHC

in processing animacy and real-world size but rather in
processing scenes (Epstein, 2005; Epstein & Kanwisher,
1998). This discrepancy might be explained by differ-
ences in the nature of the stimulus sets used to probe
the visual system. Previous studies investigating animacy
and size processing used silhouette images without back-
ground (Konkle & Caramazza, 2013, 2017; Cichy et al.,
2014; Carlson et al., 2013; Connolly et al., 2012; Konkle
& Oliva, 2011, 2012; Bell et al., 2009; Wiggett et al.,
2009; Kriegeskorte et al., 2008). In contrast, here, we pre-
sented images on natural backgrounds as they appear in
the real world. Furthermore, we found that (after control-
ling for low-level visual features) PHC indeed differen-
tiated between scenes that contain animates versus
scenes that contain inanimates. Thus, size and animacy
processing in PHC might depend on the presence of a
real-world background. We hypothesize that there is an
interaction here between animacy processing in PHC
and the object images being on a natural background.
In other words, PHC only processes animates in the pres-
ence of a background scene. This observation further
highlights the importance of using naturalistic stimulus
sets to understanding the workings of the visual system
under real-world conditions.
Finally, we found that processing of low-level visual

features as captured by the Gist descriptor occurred pre-
dominantly in low-level and midlevel visual areas rather
than midlevel and high-level visual areas. This result is
consistent with the notion that animacy and size are high-
rather than low-level visual properties (Khaligh-Razavi
et al., 2017; Konkle & Oliva, 2012; Kriegeskorte et al.,
2008) and thus being processed at later stages in the hier-
archical processing cascade of the ventral visual system.

Time Courses of Processing Animacy and
Real-world Object Size

Our results concur with previous studies investigating
the time course of object processing (Clarke et al.,
2015; Carlson et al., 2013, 2014; Cichy et al., 2014; Liu et al.,
2009; Thorpeet al., 1996) in revealing a similar timecourse for
the processing of animacy. The peak of animacy processing
at 178 msec fell within the peak confidence interval re-
ported in previous MEG studies at 152–302 msec (Cichy
et al., 2014) and at 150–240 msec (Carlson et al., 2013).

Our results go beyond previous studies by, to our
knowledge for the first time, reporting the time course
of real-world object size processing. Importantly, we
were able to directly compare the speed of processing
real-world size with that of animacy with high precision,
as we studied these two object properties using the same
stimulus set and the same imaging technique and analy-
sis pipeline. Compared with animacy processing, size
processing was slightly faster. In detail, the onset latency
for size processing at 144 msec was ∼10 msec earlier than
the onset latency for animacy processing at 156 msec.
However, the peak latency of size processing was not sig-
nificantly different from that of animacy. Together with the
observation that a partly overlapping set of brain regions
underlies animacy and size processing, this shows that
neural activity underlying animacy and size processing is
distributed and overlapping in both space and time.

Compared with the timing of processing low-level visual
features as captured by the Gist descriptor, onsets and
peak latencies for animacy and size processing were clearly
and significantly later in time. This result further strength-
ened the notion that size and animacy are object properties
processed at a late stage of the hierarchical processing cas-
cade of the ventral visual system. Together with the fMRI
results, this differentiates the processing of animacy and
size from low-level visual processing in both space and
time.

The Role of Feedback in the EVC Representation of
Real-world Size

Representing real-world size, as opposed to retinal size, is
a critical and useful feature of our visual system, referred
to as object size constancy (Sperandio, Chouinard, &
Goodale, 2012). As objects move with respect to one
another, their retinal size varies continuously. If our
visual system were to solely represent objects based on
their retinal size, without an understanding of their real-
world size, the world around us would appear distorted
and unstable.

Previous studies have shown that real-world object size
is already represented at the first stage of cortical visual
processing, that is, primary visual cortex (Sperandio
et al., 2012; Schwarzkopf, Song, & Rees, 2011; Murray
et al., 2006). Our content-dependent fusion results
extend those studies by detailing the temporal dynamics
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and the role of feedback in the representation of object
size in EVC through three observations.

First, we observed that the left EVC represented real-
world object size starting at ∼150 msec, which is signifi-
cantly later than the onset at 78 msec and peak at
128 msec of overall visual activity in EVC (Supplementary
Table 2). This temporal delay strongly suggests that size
representations in EVC emerged through feedback pro-
cessing rather than feedforward processing.

Second, we further observed that, at 80 msec, EVC rep-
resented Gist features earlier in time than it represented
object size. Given that the Gist model assesses low-level
visual processing in early visual areas, whereas object size
was most strongly represented in high-level visual cortex,
this further suggests that size representations in EVC
emerged through feedback. The relative temporal suc-
cession of processing low- and high-level visual infor-
mation in EVC observed here relatively matches results
in nonhuman primates (Supèr, Spekreijse, & Lamme,
2001; Lee, Mumford, Romero, & Lamme, 1998). Single-
cell electrophysiology in monkeys revealed that recurrent
dynamics in the primary visual cortex emerge in the after-
burst starting at 100 msec and have a role in processing
higher-level visual information (Lamme & Roelfsema,
2000; Lee et al., 1998).

Finally, examining brain regions active after stimulus
offset revealed that, at 655 msec, only the left EVC was
representing real-world size. This might also suggest in-
volvement of feedback given that there is no incoming
feedforward visual signal at this time.

Future Directions and Limitations

In this study, we used an already existing neuroimaging
data set (Cichy et al., 2016) to showcase the potential of
the content-dependent fusion method for studying the
representation of visual properties, in particular, real-
world size and animacy. Although the data and stimulus
set were not primarily designed to investigate real-world
size or animacy and were thus not fully controlled for
those two object properties, it did allow for a set of
analyses that revealed novel insights into their neural
representations.

The stimulus set here consisted of images of real-world
objects on natural backgrounds. Although this ensures
some ecological validity of our findings, it precludes a sys-
tematic analysis of which features drive object size and
animacy processing. For this, fully controlled stimulus sets
are required that are designed with the intention to differ-
entiate between candidate features. Univariate fMRI anal-
yses (Julian, Ryan, Hamilton, & Epstein, 2016; Bainbridge
& Oliva, 2015; Konkle & Oliva, 2012) suggest that the cor-
tical representation of object size might reflect object
properties that correlate with size, such as the interaction
envelope, or whether objects are used as landmarks in
navigation ( Julian et al., 2016). A recent study (Long,
Yu, & Konkle, 2017) also suggests a significant contribu-

tion for midlevel visual features accounting for the large-
scale organization of the ventral visual stream when pro-
cessing object size and animacy. We see great potential
for future studies with fully controlled experimental
results that use content-dependent fusion to unravel the
features that underlie animacy and size processing.
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