Basic Level Scene Understanding: Categories, Attributes and Structures (review article).
Xiao, J., Hays, J., Russell, B. C, Patterson, G., Ehinger, K., Torralba, A., & Oliva, A. (in press). Frontiers in Perception Science

A longstanding goal of computer vision is to build a system that can automatically understand a 3D scene from a single image. This requires extracting semantic concepts and 3D information from 2D images which can depict an enormous variety of environments that comprise our visual world. This paper summarizes our recent efforts toward these goals. First, we describe the richly annotated SUN database which is a collection of annotated images spanning 908 different scene categories with object, attribute, and geometric labels for many scenes. This database allows us to systematically study the space of scenes and to establish a benchmark for scene and object recognition. We augment the categorical SUN database with many scene attribute labels and explore attribute recognition. Finally, we present an integrated system to extract the 3D structure of the scene and objects depicted in an image.